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Abstract

This paper is an extended version of a post by the author at the Stack Exchange Physics Forum,

an answer to a question about why ∆m2
12 and θ12 are associated with solar neutrinos given that

there are three neutrinos considered in the usual oscillation equations Why ∆m2
12 identified with

solar?.
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I. INTRODUCTION

There are historical as well as physical reasons why the smaller neutrino squared mass

splitting, ∆m2
12, and the θ12 mixing angle between ν1 and ν2 are associated with the solar

electron neutrino flux and often offered as the solely relevant parameters in simplified two-

neutrino models concerned with the observed flavor change of the solar flux.

II. HISTORY

In 1930 Pauli proposed the neutrino as a second emitted particle in β-decay to explain the

continuous spectrum of the electron (announcing this suggestion in 1933 more publicly at the

Seventh Solvay Conference). Fermi (who had attended that 1933 conference) immediately

developed a theory of β-decay process incorporating the neutrino and notably making the

first application to fermions of the “Dirac-Jordan-Klein method of second quantization” (to

quote from the English translation of the 1934 version of his paper [1]) where the electron

and neutrino probability amplitudes ψ and ϕ (and their complex conjugates) became field

operators summing annihilation and creation operators acting on occupation numbers for

the states. Most people do not realize how important this 1934 paper by Fermi was in this

regard.

C. N. Yang (Nobel Prize in Physics 1957 with T.D. Lee for development of the theory that

parity is violated in the weak interaction), relates a conversation he had with Eugene Wigner

in the cafeteria of Rockefeller University c. 1970. Yang asked Wigner what he thought was

Fermi’s greatest contribution to physics and was surprised when Wigner told him it was the

beta-decay theory. Yang was surprised because he knew that the original Fermi theory had

been superceded by electroweak theory with exchange of massive bosons W± and Z. Wigner

explained that he and von Neumann had been thinking about β-decay for a long time but

simply did not know how to create an electron in a nucleus. Yang reminded Wigner that

it was he and Jordan who had invented the second quantized ψ. Wigner replied, “Yes, yes.

But we never dreamed that it could be used in real physics.”[2]

In 1934 Yukawa proposed what came to be known as the meson (“middleweight”, with

mass above lightweight leptons but below heavyweight baryons) as the quantum of the field

(the strong force) holding the nucleus protons and neutrons together (despite the intense
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Coulomb repulsion between the protons). By 1937 Anderson and other experimenters iden-

tified likely candidates for Yukawa’s meson in cosmic ray particles. There were inconsistent

experimental results for a period (and an intervening world war), but in 1947 Powell dis-

covered that there are two particles involved in the cosmic rays detected, i.e., the π or pion

(a meson with zero spin) and the µ or muon (a lepton with fermion spin 1/2) produced

when the pion decays (substantially the theoretical proposal made by Marshak and Bethe

the same year, and an unknown at the time similar 1943 idea of Sakata and Inoue delivered

to a Japanese “meson club” meeting during World War II).[3]

It was realized fairly quickly that the neutral low mass (or massless) particle accompa-

nying the muon in the decay of pions was probably a neutrino π± → µ±+ ν and that in the

subsequent decay of the muon another two neutrinos were involved µ± → e± + 2ν. Some of

the c. 1949 enhanced photographic emulsions from Bristol show plainly visible a long muon

track leaving the short track of a pion at approximately a right angle and, ending at various

angled tracks, the electron emitted in the muon decay.

It was natural and economical to assume that these neutrinos were the same neutrino

believed to accompany the electron in beta decay n → p + e− + ν (we now know it is an

antineutrino ν̄e emitted in β-decay).

In 1951 Ray Davis began experimenting with a radiochemical neutrino detection method

suggested by Pontecorvo (1946), i.e., 37Cl + νe → 37Ar + e−, or n+ νe → p+ e− where one

of the neutrons in 37
17Cl captures a neutrino and transmutes to a proton, making radioactive

37
18Ar, which is extracted later and its decays (predominantly K-orbital electron capture with

Auger electron ejection) counted to estimate the number of neutrino reactions that occurred

on the chlorine. Davis published negative results in 1955, and in 1958 again published

failure to detect this reaction, this time using a much larger reactor source of antineutrinos

(Savannah River). The failure to detect the reactor antineutrinos (but Davis did detect

solar neutrinos with the same reaction beginning in 1967 at the Homestake Mine site,

eventually earning him a Nobel Prize in 2002) with this reaction demonstrated that the

neutrino was not its own antiparticle, i.e., ν and ν̄ were distinct particles (it is still possible

that neutrinos are Majorana fermions, i.e., their own antiparticles, but their behavior will

be the same as a Dirac fermion in most experiments).[4] This result could be explained by

a simple rule for lepton number conservation (a global symmetry) introduced in 1953 by

Konopinski and Mahmoud [5], i.e., assign a positive lepton number L = +1 to the electron,
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muon and neutrino, and a negative lepton number L = −1 to their antiparticles (this concept

has evolved since such that lepton and antilepton number is conserved separately for each

flavor): the 37Cl + ν̄e → 37Ar + e− reaction is then forbidden since it has L = −1 on the left

side and L = +1 on the right.

In 1956 Reines and Cowan announced detection of the antineutrino in the inverse beta

decay process ν̄ + p → n + e+ (note L = −1 on both sides of the equation by the scheme

above), also using the Savannah River reactor source, but utilizing a Cd-doped water target

(the water provided the protons p) sandwiched between liquid scintillator detectors, detect-

ing the prompt double gamma ray annihilation of the positron and a delayed second signal

as the neutron n produced in the decay was thermalized (slowed down by elastic collisions

with protons in the water) and captured by cadmium, which emits ∼ 9 MeV in gamma

rays in the neutron capture process. A nucleus is excited to ∼ 8 MeV or more by neutron

capture, plus any additional energy the neutron brings from its momentum, though that is

generally low for a thermalized neutron that is able to be captured rather than scattered; a

photon γ or cascade of photons is subsequently emitted to take the excited nucleus back to

ground state.[6]

By 1959 there was some question about the nature of the neutrinos in muon decay (and

the neutrino in the preceding pion decay) because experimenters could not observe the

decay µ→ eγ, i.e., if there was only a single kind of neutrino ν, they should also see muons

decaying into an electron and a gamma ray [7]. Pontecorvo suggested in 1959 that it might

be the case that the muon and electron neutrinos are distinct particles νµ 6= νe. In 1962

Lederman, Schwartz and Steinberger observed 24 instances of ν̄µ + p→ µ+ +n, but none of

ν̄µ + p→ e+ + n, which should have been equally common in their experiment if ν̄e and ν̄µ

were the same particle.[5] At this point in the timeline we now have two flavors of neutrino.

A few years prior, in 1955, Gell-Mann and Pais published a paper describing the neutral

kaon system of K0 and K̄0 (they denoted these θ0 and θ̄0 at that time) as a particle mixture,

i.e., superpositions of underlying mass states in today’s notation KS or “K-short” and KL

or “K-long”, or K1 and K2 if CP is conserved (1955 notation θ0
1 and θ0

2) with short and

long decay times to pions respectively (or write KS and KL in terms of K0 and K̄0 to de-

scribe strangeness oscillations).[8] [9] In 1957 Pontecorvo [10] considered whether there might

be other neutral particles differing from their antiparticles for which particle→antiparticle

transitions are not forbidden. He looked at mesonium, a bound system of µ+e− (an “atom”
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made of a heavy positive muon and an electron, sometimes called the “perfect atom” by

researchers today, being composed of point-like leptons and so free of perturbations arising

from nuclear size effects) possible inversions to antimesonium (µ−e+), but added a couple

of lines at the end of the article wondering whether a neutrino might transform into an an-

tineutrino, which would permit ν ↔ ν̄ transitions in vacuum. This was 1957 so he could not

know yet that the 1962 Lederman experiment mentioned above would establish that there

were two neutrinos, one associated with the electron and one associated with the muon (or

he might have suggested those transitions rather than particle-antiparticle), however, this

was one of the first suggestions that neutrinos might change their nature in flight.

Even more interesting was the 1962 paper by Maki et al [11] that tried to salvage a now

obscure theory of B+ matter that was in jeopardy because of the Lederman group discovery

that the muon and electron neutrinos were distinct particles (recent experimental results

with the K0 were also a problem). Maki and his collaborators proposed that the ”true

neutrinos” are linear combinations of the weak neutrinos νe and νµ that interact with their

respective leptons e and µ. They described for the first time neutrino weak interaction states

as combinations of mass states governed by a mixing angle δ in their equation (2.18):

νe = ν1 cos δ − ν2 sin δ

νµ = ν1 sin δ + ν2 cos δ

Maki et al added that these weak neutrinos were not stable and could transmute νe ↔ νµ.

Having established the context, we find Ray Davis in 1968 [4] publishing first results from

the Homestake Mine detector using the 37Cl + νe → 37Ar + e− reaction he had worked with

in the 1950’s. Davis reported an upper limit on the detected solar electron neutrino flux as

3 SNU. The SNU, Solar Neutrino Unit, is defined by SNU ≡ 10−36 interactions per target

atom per second. The threshold of the 37Cl + νe → 37Ar + e− reaction is is 0.81 MeV, so

the expected flux could not contain any of the predominant neutrino flux of the Sun, the

p+ p→ 2H + e+ + νe fusion with maximum neutrino energy of 0.423 MeV.

The solar neutrinos with sufficient energy for the 37Cl capture, primarily 8B neutrinos at

〈Eν〉 = 6.735 MeV, but including 7Be and a few other species, were predicted by John Bahcall

(within the SSM Standard Solar Model he helped construct [12]) to provide 7.5 ± 3 SNU

detected flux at Homestake. Thus began the “solar neutrino problem,” the solution of which

over the next three decades required development of the MSW effect theory (Wolfenstein

5



1978, 1986 Mikheyev and Smirnov [13]) and the results of the SNO experiment 2001.

SNO, reporting data collected 2 November 1999 through 28 May 2001 (their Phase-

I campaign), separately detected solar νe flux (kinetic energy threshold 5 MeV) as φe =

1.76 ×106 cm−2 s−1 via charged current CC reaction νe+d→ p+p+e− where d is deuterium

2
1H).[14]

The total flux measured with the neutral current NC reaction νx + d → n + p + νx

(breakup of the deuterium nucleus by neutrino) where νx includes all neutrino types was

φνe,νµ,ντ = 5.09 × 106 cm−2 s−1 (the threshold for this reaction is 2.2 MeV). By detecting

solar neutrinos of all flavors with the NC reaction, SNO verified that the expected amount

of SSM neutrino flux for 8B was present (φSSM = 5.05 × 106 cm−2 s−1 from Bahcall’s 2001

model), but that only about a third of the initial νe at production in the Sun remained in

the detected flux (detected by the CC reaction), i.e., the νe had somehow become νµ (or ντ ).

The Davis 1968 experiment (the result of which was first confirmed by the Kamiokande

[15] imaging water Cherenkov detector in 1989 observing neutrino arrival time, direction

and energy in neutrino-electron scattering νee
− → νee

−) resulted in many proposals for a

solution to the deficit in solar electron neutrino νe flux, one of which was the suggestion

that neutrinos oscillate between flavors, 1969 Gribov and Pontecorvo.[16] They arrived at

the mixing relations (similar to 1962 Maki et al)

νe = cos(θ) ν1 + sin(θ) ν2 , νµ = − sin(θ) ν1 + cos(θ) ν2

(The negative sign is placed on the ν1 term of νµ here, while 1962 Maki et al given above

placed it on the ν2 term of νe. It is simply an intrinsic phase eiπ assuring the two flavor

states are orthogonal and can be placed on νe or νµ or a combination as long as the difference

is π. [17]) Gribov and Pontecorvo were proposing that the ν1, ν2 were fields of Majorana

neutrinos with masses m1 and m2, so most of their scheme is not directly recognizable in

the Dirac form we normally see.

Reines wrote in 1979 [18] that the number of neutrino types and the particular mixing

scheme could be associated with the specific reduction in expected neutrino flux at sufficient

distance. For example, that

...if there are three neutrino types, νe, νµ, ντ with maximal mixing between them

then for a great enough distance from the source and starting with νµ only we
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would find

νµ → 1/3νe, 1/3ντ , 1/3νµ

The concept of neutrino mixing was well enough known that by 1977 we had Wolfenstein

writing incidentally in an article [19] proposing a matter potential for neutrinos (publishing

in 1978, his idea was subsequently used to create the MSW solution to the solar neutrino

deficit by Smirnov and Mikheyev in 1986 as we mentioned above):

Considering the case of νe and νµ, vacuum oscillations require that the eigenstates

in vacuum are mixtures

|ν1〉 = |νe〉 cos θv − |νµ〉 sin θv

|ν2〉 = |νe〉 sin θv + |νµ〉 cos θv (1)

with distinct masses m1 and m2 (m1 > m2). Neutrino oscillations result from

the difference in the phase factors governing the time dependence of ν1 and ν2,

|νit〉 ∼ exp(−itm2
i /2k)

The characteristic oscillation length in the vacuum is lv(k) = 4πk/(m2
1 −m2

2).

We note that k in the above is the neutrino momentum, or energy given that the neutrino

is always ultrarelativistic.

We find Sciama writing similarly in 1981 [20]:

νe
νµ


︸ ︷︷ ︸

Weak interaction eigenstates

=

 cosα sinα

− sinα cosα


︸ ︷︷ ︸

Mixing matrix

ν1

ν2


︸ ︷︷ ︸

Mass eigenstates

(2)

The mixing matrix is orthogonal and so defines a mixing angle α. The probability

P for a certain neutrino, say νe, of energy E to turn into νµ after propagating a

distance L is then given by
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P = sin2 2α sin2 (m2
1 −m2

2)L

4E
(3)

Thus a detector sensitive only to νe could measure m2
1 − m2

2, the difference of

the squared masses of the propagating eigenstates. If several flavors are involved

(the τ lepton was discovered in 1978 at SLAC so it was highly likely there would

be a third neutrino flavor) the mixing matrix is larger and the situation more

complicated.

Thus far then, we see the mass splitting ∆m2
12 and mixing angle θ12 is associated with

electron neutrinos. Why are electron neutrinos associated with the Sun?

III. WHY SOLAR ELECTRON NEUTRINOS

The proton-proton cycle (dominant in lower main sequence stars like the Sun) [21] consists

of several fusion paths creating proton-rich nuclei that lie above the band of nuclear stability

(if you plot nuclide number of protons on ordinate and number of neutrons on abscissa, the

valley of stability is approximately a 45◦ line going up left to right for light nuclei, i.e., equal

number of protons and neutrons in the nuclide N = Z = A/2, but begins to droop for heavy

nuclei as more neutrons are required to overcome the mutual Coulomb repulsion between

many protons) [22].

These nuclei decrease their unstable p:n ratio through β+-decay, e.g., p+p→ 2
1H+e++νe

(2
1H being deuterium, composed of one proton and one neutron, resulting from β+ decay of

a diproton pp). There is not enough energy available in the solar core to create a π meson

in p→ n+π+ reaction via the strong force, so the weak interaction mediates the final state,

producing leptons necessarily. There is not enough energy available in these weak decays

(for example, pp Emax
ν = 423 keV, 8B Emax

ν = 16.3 MeV) to produce µ+ (mass ∼ 105 MeV)

or τ+ (mass ∼ 1.7 GeV), so the produced leptons are all e+ + νe.[23] This is why electron

neutrinos are associated with the Sun.
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IV. DERIVE TWO-NEUTRINO OSCILLATION EQUATION

It is worthwhile to take a moment and examine in detail at how the oscillation transition

equation above is typically produced 1. The mass eigenstates of the neutrino can be modelled

as free particle solutions to the wave equation with neutrinos propagating as plane waves

(the neutrinos propagate as wave packets, but that somewhat more complicated approach

results in the same transition equation):

|νj(t)〉 = |νj〉e−ipj(xd−xs) (4)

In the context of relativistic quantum mechanics we see then

e−ipj(xd−xs) = e−i(EjT−pjL) = e−iφj (5)

In that expression, pj are the momentum four-vectors of the neutrino mass states. Prop-

erly denoted they would be pµ = {E, px, py, pz} (contravariant four-vector). Similarly, the

position four-vectors of the neutrino at d destination and s source xd, xs would be formally

denoted xµ = {t, xx, xy, xz} (we are trying to be clear here, so labelled the three Cartesian

components x, y, z; the four-vector components are normally indexed µ = 0, 1, 2, 3) The

scalar product of the momentum and position four-vectors then gives the phase φj,k of each

neutrino mass state (more on the phase below), φj,k = xµpµ = Et − ~p · ~x = Et − ~pL in

the argument of the exponential (~p denoting the 3-vector component extracted in the scalar

product).

Now we recall (we are using the two-neutrino mixing matrix shown in Eq. (2) above) that

the interaction neutrino (the flavor in a weak interaction) for an electron neutrino is

νe = cos θ ν1 + sin θ ν2 (6)

and that the mass states ν1,2 can be thought of in terms of flavor e, µ inverting the mixing

relations:

ν1 = cos θ νe − sin θ νµ

ν2 = sin θ νe + cos θ νµ (7)

To calculate the transition probability of an electron neutrino equation, we can project

out the νµ flavor content of the initial νe propagation state ket |νe(L, T )〉 and square:

1 The following sources were consulted throughout this derivation: [24] [25].
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P (νe → νµ) = |〈νµ | νe(L, T )〉|2

To accomplish that simply, we rewrite the equation for the electron neutrino ket at

production, replacing the mass states ν1, ν2 with their flavor content expressions (notice

that if the mixing angle θ12 were zero, then the νe neutrino would be created as a single

mass state ν1 in vacuum):

|νe(L, T )〉 = (cos θ) |ν1〉︸︷︷︸
replace

e−iφ1 + (sin θ) |ν2〉︸︷︷︸
replace

e−iφ2

= (cos θ) (cos θ|νe〉 − sin θ|νµ〉)︸ ︷︷ ︸
flavor content of mass state 1

e−iφ1 + (sin θ) (sin θ|νe〉+ cos θ|νµ〉)︸ ︷︷ ︸
... of mass state 2

e−iφ2

We then rearrange that equation so we can distinguish the |νe〉 and |νµ〉 factors, carrying

out trigonometric term products also:

|νe(L, T )〉 = |νe〉
[
cos2 θe−φ1 + sin2 θe−φ2

]
+ |νµ〉

[
sin θ cos θ

(
e−iφ2 − e−iφ1

)]
Only the |νµ〉 term from the production ket |νe(L, T )〉 expression above will survive the

inner product with the 〈νµ| bra. The flavor basis states α, β ∈ {e, µ} are orthogonal so their

inner product is zero if the flavors are not identical, i.e., 〈νβ | να〉 = δαβ where δαβ is the

Kronecker delta (δαβ = 1 for α = β, zero if α 6= β). We therefore have:

P (νe → νµ) = |〈νµ | νe(L, T )〉|2

= 〈νµ | νµ〉
∣∣ sin θ cos θ

(
e−iφ2 − e−iφ1

)∣∣2
= (1)

(
sin2 θ cos2 θ

) ∣∣(e−iφ2 − e−iφ1)∣∣2

Using the Euler formula and trig simplification, the squared modulus2 of the difference of

the exponentials simplifies to:∣∣(e−iφ2 − e−iφ1)∣∣2 =
(
e−iφ2 − e−iφ1

) (
e+iφ2 − e+iφ1

)
= 2 [1− cos (φ1 − φ2)]

2 Sometimes referred to as the field norm, (
√
zz∗)2.
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That gives us

P (νe → νµ) = 2
(
sin2 θ cos2 θ

)
[1− cos (φ1 − φ2)]

Simplifying with more trigonometry identities we obtain

P (νe → νµ) = sin2 (2θ) sin2

(
φ2 − φ1

2

)
Notice that if there is no phase difference, i.e., if φ2 = φ1, then there is no probability

of flavor oscillation P (νe → νµ) = 0. Now from above we had the phase of the propagating

neutrinos as φj,k = (Ej,kT − pj,kL). We can then write that the difference in phase is

∆φjk = φj − φk = (Ej − Ek)T − (|pj| − |pk|)L

The notation |pj,k| is emphasizing that this quantity is the 3-momentum scalar value in

the direction of propagation of the neutrino (obtained from the scalar product of position

and momentum four-vectors earlier above). You could say that the distance is L = ~k(xd−xs)

(xd the detector location, xs the source), with ~k the unit vector in the direction of neutrino

momentum and momentum value |pj,k| = |~pj,k| or ~pj,k = ~k|pj,k|.

We may rewrite ∆φjk above as

∆φjk = (Ej − Ek)T −
(
|pj |2−|pk|2
|pj |+|pk|

L
)

That was obtained simply by multiplying (|pj| − |pk|)L by (|pj|+ |pk|) / (|pj|+ |pk|).

Now let us rewrite each of the squared momenta in the numerator above, |pj|2 − |pk|2,

using the relativistic energy relation E2 = p2 + m2 =⇒ p2 = E2 − m2 and the fact that

E2
j − E2

k = (Ej − Ek) (Ej + Ek). We pull that fraction being subtracted above to make it

clear what is being done (and the signs resulting):

(−)
|pj|2 − |pk|2

|pj|+ |pk|
L = (−)

[
(Ej−Ek)(Ej+Ek)

|pj |+|pk|
− m2

j−m2
k

|pj |+|pk|

]
L

We replace the original term with the expanded term in the ∆φjk equation above:
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∆φjk = (Ej − Ek)T −
(
|pj|2 − |pk|2

|pj|+ |pk|
L

)
∆φjk = (Ej − Ek)T −

[
(Ej − Ek) (Ej + Ek)

|pj|+ |pk|
−
m2
j −m2

k

|pj|+ |pk|

]
L

We now pull the mass squared fraction out of the bracket, being careful to apply the two

negative signs to obtain a positive term and retain the factor of L:

∆φjk = (Ej − Ek)T −
[

(Ej − Ek) (Ej + Ek)

|pj|+ |pk|

]
L+

m2
j −m2

k

|pj|+ |pk|
L

Now we see why we factored E2
j − E2

k = (Ej − Ek) (Ej + Ek) above. It is clear that the

time T and the length L both share a factor (Ej − Ek), so let us apply that factorization

accordingly in the expression above:

∆φjk = (Ej − Ek)
[
T − (Ej + Ek)

|pj|+ |pk|
L

]
+
m2
j −m2

k

|pj|+ |pk|
L

So what does all this algebra buy us? The result is that we do not need to make the

usual unphysical claims that Ej = Ek or pj = pk to obtain a usable form for the phase

difference ∆φjk, necessary to predict or analyze neutrino oscillation (in general there is no

reason whatsoever to assume that the different mass eigenstates composing a flavor neutrino

state have either the same energy or the same momentum). It is only necessary to note that

the velocity of the neutrino is almost indistinguishable from c in most cases, so T ' L, since

T = L/c. In the natural units of high energy physics, ~ = c = 1, mass and momentum are

units of E (for example, GeV), time and length are identical units 1/E.

Making that approximation, i.e., that T ' L above, you see (Ej−Ek)T − (Ej−Ek)L = 0

null the bracketed expression in the ∆φjk equation above and the phase difference is then

simply the remaining non-zero term

∆φjk =
m2
j −m2

k

|pj|+ |pk|
L =

∆m2
jk

2p
L

where p = (pj + pk)/2 (and E may replace p in this final term, i.e., we may safely neglect

the dependence of pj, pk on the small masses mj,mk and treat p as the zero neutrino mass

momentum p = E).

12



But what about the factor of
(Ej + Ek)

|pj|+ |pk|
on (Ej − Ek)L in the bracketed expression? Does that not make the difference (Ej −

Ek)T − (Ej − Ek)L nonzero? You can see more clearly that it does not if you replace the

momentum terms pj,k in the denominator of that fraction with their energy form using the

binomial expansion (1 + x)α = 1 + αx+ α(α−1)
2!

x2 + · · · to expand pj,k =
(
E2
j,k −m2

j,k

)1/2
to

first order:

Ej + Ek
pj + pk

=
Ej+Ek

Ej

(
1−

m2
j

2E2
j

)
+Ek

(
1−

m2
k

2E2
k

)

For a sample case of neutrino energy Eν = 1 MeV and mass eigenstate mj,k ≈ 0.07 eV

(a guess consistent with observations), the correction for the T ∼ L approximation above is

then

∼ O

(
m2
j,k

2E2
j,k

)
∼ O

(
10−15

)
So

Ej + Ek
Ej (1− 10−15) + Ek (1− 10−15)

≈ Ej + Ek
Ej + Ek

= 1

and (Ej−Ek)T−(Ej−Ek)L = 0 is valid, given T ' L. The resulting neutrino relative phase

∆φjk =
∆m2

jk

2E
L (which we note is Lorentz Invariant) is inserted in the oscillation equation

from above to obtain the familiar two-neutrino transition expression:

P (νe → νµ) = sin2 (2θ) sin2

(
φ2 − φ1

2

)
= sin2 (2θ) sin2

(
∆φ

2

)
= sin2 (2θ) sin2

(
∆m2

jkL

4E

)
(8)

Notice the factor of 4 emerges in the denominator of the phase term as a factor of 2 was

present from the earlier trigonometric identities and the ∆φ expression brought a second

factor of 2 (2E specifically). As we discussed above, we are able to treat the neutrino as

massless and replace p by E in ∆φjk. Flavor oscillation is observable only as the manifesta-

tion of the difference in these (squared) minute masses, not their absolute values. If there
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is no difference in mass, then there is no flavor oscillation (hence the excitement in physics

when evidence of neutrino oscillation appeared, i.e., neutrinos must have mass for this to

occur, generally speaking).

We note two exceptions to our suggestion that neutrinos are always ultrarelativistic v ≈ c.

The theoretical remnant neutrino background from the Big Bang, the so-called Cosmic

Neutrino Background CνB, includes at least two non-relativistic neutrino mass eigenstates,

given their likely temperature today T 0
ν ' 1.68 ×10−4 eV ' 1.95 K.[26] That is, kBT < mc2,

their temperature (kinetic energy more or less) is lower than the likely neutrino rest mass

of two of the three mass states O(10−3 − 10−2 eV). The neutrino is non-relativistic also

in direct mass experiments (e.g. KATRIN) observing the electron energy very close to the

β-decay endpoint in n→ p+e+ ν̄e where the electron e has almost all of the β-decay energy

and the accompanying neutrino ν̄e has almost none (so the neutrino energy in that case is

simply its rest mass, the indirect target of the experiment).[27]

V. NEUTRINO FLAVOR CHANGE AND THE SUN

We have shown above that historically ν1, ν2 and their mass difference ∆m2
12 were asso-

ciated with νe (and ν̄e) electron neutrinos, as well as the angle referring to their mixing,

θ12. We explained why only electron neutrinos are produced in the Sun, so on this basis it

is easy to see the connection among these entities. Why, however, would a single squared

mass splitting and a single mixing angle be able to accurately characterize solar neutrino

oscillations when there are three neutrinos, three squared mass splittings, three mixing an-

gles, etc.? Before we begin to address that question, we must note that to be precise, there

are not any solar neutrino flavor oscillations, at least no one on Earth has detected periodic

L/E dependendent flavor change of the νe produced in the solar fusion chains. [17]

However, there is flavor change , since fewer solar electron neutrinos νe are detected than

predicted by the SSM Standard Solar Model and other explanations have been ruled out. [28]

About 0.55 of the expected low energy νe (say below 1 MeV, think pp and 7Be neutrinos) are

detected. On the other hand, only about 0.3 of the higher energy solar neutrinos, primarily

8B above 5 MeV, are observed. This is displayed in the following figure Fig. 1 from the 2014

Borexino experiment [29]:

In Fig. 1 the pink (or fuschia perhaps) band is 8B survival probability, calculated over
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FIG. 1. 2014 Borexino experiment Figure 84. See text for description.

the entire energy range of solar neutrinos using the MSW-LMA model (MSW effect and

Large Mixing Angle). The black points represent experimental observations of the partic-

ular species (e.g., pp, 8B, etc.), with labels for the experiment. For example, SNO (which

we have mentioned already), SK is SuperKamiokande, BX is Borexino. The “pp (all solar)”

label includes data from all experiments (including Borexino) measuring solar neutrinos at

that low energy, e.g. 1997 GALLEX [30] utilizing a radiochemical method similar to the

Davis chlorine technique discussed above, using instead the 233 keV threshold 71
31Ga (gal-

lium) neutrino capture reaction, where one of the neutrons in 71
31Ga captures an incoming

solar neutrino νe and transmutes to a proton νe+n −→ p+e−, making radioactive 71
32Ge (ger-

manium), i.e., through the process 71
31Ga(νe, e

−)71
32Ge. The 71

32Ge is extracted later and a count

made of the signal from the Auger electrons and x-rays it produces when it subsequently

inverse β-decays (electron capture to the ground state of 71Ga) with half-life ∼ 11 days

(using gas-filled proportional counters designed to produce a single pulse with amplitude

and rise-time proportional to the incident β particle or x-ray photon energy).

A. how determine if oscillations are observable

When you consider detecting neutrino flavor change you first need to calculate the dis-

tance scale (λosc) over which oscillation effects could be observable.
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The characteristic wavelength λosc, also known as oscillation length Losc, can by calculated

by setting the oscillation term (phase difference), often denoted ∆jk, (the argument to the

sin2 term in Eq. (8)) equal to π and solving for L:

π =
∆m2

jkL

4E
set osc factor ∆jk equal to π

4πE = ∆m2
jkL solve for L

4πE

∆m2
jk

= Losc = λosc osc wavelength (9)

see Section 6.4 and Chapter 8 in [31] and, in [24], Chapter 14, in particular §14.7 and Eqs

(14.36), (14.39), and (14.50) and surrounding text.

If you apply the correct SI ~c factors to natural units Eq. (9) you can obtain a convenient

formula for the vacuum oscillation length in km for a given neutrino energy Eν in GeV and

mass split difference in eV2:

λosc =
4πE

∆m2
jk

=
(12.57)E (GeV)

∆m2
jk (eV2)

λosc(km) =
12.57E × 109 (eV)

∆m2
jk (eV2)

=
12.57 × 109 (~c)

(eV)

select ~c above in units (eV km) to cancel denom remaining eV and leave km

λosc(km) =
12.57 × 109 ( 1.97 × 10−10) [eV km] )

(eV)
= 2.47

E (GeV)

∆m2
jk (eV2)

(10)

For example, the oscillation length is λosc ∼ 8.8 km for the ∆m2
12 = 7.5 × 10−5 eV2 mass

split with neutrino energy 267 keV = 267 × 103 × 10−9 = 267 × 10−6 GeV:

λosc = 2.47 × (267 × 10−6 GeV)

7.5 × 10−5eV2 = 8.8 km

In order to detect oscillations the oscillation length λjk of the squared mass splitting(s)

being probed should be close to or slightly less than the baseline L (distance from source

to detector) [24]. Clearly, the distance from the Sun to Earth, L ∼ 1.50 × 108 km (1 au), is

far greater than the λ12 associated with ∆m2
12 = 7.5 × 10−5 eV2. The other mass splitting

produces a similarly small oscillation length, λ32 ≈ λ31 ∼ 0.3 km for the ∆m2
31 = 2.457 ×

10−3 eV squared mass splitting.

Put another way, an optimal neutrino oscillation experiment is one in which the ratio of

the neutrino energy and baseline are of the same order as the mass splitting, E/L ∼ ∆m2

[31].
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You require ∆ij = ∆mjkL/(4E) & 1 for at least one ∆m2
jk, i.e., the neutrino oscillation

length should be of the order of, or smaller, than the source-detector distance [24]. If you

keep in mind that we are talking about the ∆ij argument of the second sin2 term in Eq. (8)

3, it should be obvious that designing the experiment such that this dynamic argument

reached π/2 = 1.57 rad (or a few odd integer multiples of π/2), for example, would allow

the transition probability to reach maximum (and that π multiples would result in zero).

For the distance between the Earth and the Sun L ∼ 1.50 × 108 km you have, for a low

energy neutrino:

∆ij = 1.27
∆m2(eV2)L(km)

Eν(GeV)

∆31 =
∆m2

31L

4E
= O(109)� 1,

∆21 =
∆m2

21L

4E
= O(107)� 1,

where E = 267 keV (267 × 10−6 GeV), ∆m2
32 ∼ ∆m2

31 = 2.457 × 10−3 eV2, and ∆m2
21 =

7.5 × 10−5 eV2.

That tells you that an oscillation experiment is out of the question with solar neutrinos.

The required energy resolution (see §2.3 [28]) would be

∆Eν ≈
Eν
Nosc

(11)

For the distance from the Sun to Earth, L ∼ 1.50 × 108 km, that implies Nosc ≈ L/λosc '

17 × 106 oscillations of the 267 keV neutrino with λosc ∼ 8.8 km we are considering (setting

aside other factors like whether the mass states of the neutrino packets would have separated

over that distance and the averaging that occurs over the region of neutrino production in

the Sun, estimated to be ∆R ' (0.04-0.20)R� or ' 105 km).

Using the ∆Eν equation above Eq. (11), that would require a detector with O(0.02 eV)

resolution. For comparison, the Borexino experiment, using a liquid scintillator detector,

has a neutrino energy threshold Emin ∼ 150 keV, roughly seven orders of magnitude from

the required resolution to detect oscillation as a function of neutrino energy in this case.

3 The first term in Eq. (8), sin2 2θ, is the amplitude term with the mixing angle θ. It determines how much

of the peak from the oscillating term is observable .
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B. what about the solar mixing angle and mass squared splitting

Yes, you say, but why are θ12 and ∆m2
12 associated with solar neutrino flavor change

when the general equations involve three mixing angles, three square mass splittings?

The νe electron neutrino vacuum mix (probabilities, hence square the mixing matrix

elements; see Eq. (21) U mixing matrix farther below) of mass states νj is:

|νe〉 = U2
e1|ν1〉+ U2

e2|ν2〉+ U2
e3|ν3〉

= [cos θ12 cos θ13]2|ν1〉+ [sin θ12 cos θ13]2|ν2〉+ [sin θ13|]2ν3〉

= 0.6805|ν1〉+ 0.2977|ν2〉+ 0.0218|ν3〉 for θ12 = 33.48◦, θ13 = 8.50◦ (12)

The electron neutrino is therefore 68% ν1 and ∼ 30% ν2 (almost no ν3 at 2%), so it is

natural to associate the θ12 angle that specifies the ν1 and ν2 mixing with the solar electron

neutrino, and the mass split difference between them, ∆m2
12.

C. the low energy region (LER)

As we mentioned above 14, there are two regimes in the Borexino graph Fig. 1 of exper-

imental observations of solar νe survival fractions (three if you count the transition region

between the two, the predicted upturn from the low Pee ≈ 0.3 around 10 MeV neutrino en-

ergy, to nearer Pee & 0.4 at 5 MeV as the MSW effect begins to turn off, apparently reported

for the first time by Super-Kamiokande at Neutrino2020).

We detect about 0.55 of the expected low energy (expectation 〈Eν〉 ∼ 267 keV) electron

neutrinos from pp fusion and subsequent β+-decay:

p+ p→ 2
1H + e+ + νe

(2
1H is deuterium, i.e., one proton + one neutron, resulting from β+ decay of the initial

diproton p+ p fusion.)

For these lower energy solar neutrinos there is not much matter potential. Using a PDG

formula for the electron number density Ne cm−3 required for MSW resonance4, we can

4 Equation (14.60) [24].
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quantify this:

N res
e =

∆m2
jk cos 2θjk

2Eν
√

2GF

' 6.56 × 106
∆m2

jk[eV2]

Eν [MeV]
cos 2θjk cm−3 NA (13)

where NA = 6.022140857 × 1023 is Avogadro’s number and GF = 1.1664 × 10−5 GeV−2 is

the Fermi coupling constant.

For the ∆m2
12 = 7.5 × 10−5 eV2 mass split and associated mixing angle θ12 = 33.48◦

(we are using 2016 global fit values [32] to maintain closer correspondence with the 2014

Borexino graph), a pp neutrino with Eν = 0.267 MeV would require an electron number

density of

N res
e ' 6.56 × 106 7.5 × 10−5 [eV2]

0.267 [MeV]
cos[(2)(0.5843 rad)] cm−3 6.022140857 × 1023

= 4.3431 × 1026 cm−3

Using the above formula Eq. (13), we find that a Eν = 0.267 MeV neutrino would require

Ne(t = 0) = 4.3431×1026 cm−3 e− number density at birth for MSW resonance (our criterion

here for significant matter effect). Consulting the B16(GS98) SSM (Standard Solar Model)

data [33] we find the radial location of the maximum emission point of the pp neutrinos

is r� = 0.0990 (r� = 0 is the center of the Sun, r� = 1 the normalized radius) and the

electron number density there is Ne(r� = 0.0990) = 4.0249 × 1025 cm−3. Therefore, for

significant matter effect on the pp neutrino flavor evolution we require approximately an

order of magnitude more electron number density than is present at the production location

in the solar core.

D. can LER survival probability depend on only the θ12 angle?

Since there is almost no MSW effect at low energy, pp neutrino flavor oscillations occur

in the Sun as in vacuum (no significant level jump probability either, but we will not get

into that here). Now, since we cannot observe solar neutrino oscillations at Earth (for the

reasons discussed in Section V A), we may only observe average flavor change. For the solar

pp νe, PDG offers a two-neutrino model survival probability equation ((14.89) in [24]):

P̄ 2ν(νe → νe) ' 1− 1

2
sin2 2θ12 (14)

We obtain P̄ 2ν(νe → νe) ' 0.5766 for θ12 = 33.48◦ with this equation. Aha! We see the

low energy solar neutrino survival probability (the left side of the Borexino graph Fig. 1 ),
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Pee ≈ 0.55) is dependent solely on the θ12 mixing angle. Why is this true when there are

three mass splittings and three mixing angles?

E. Incoherent vs coherent detection, some quantum mechanics

The amplitude for finding a νl′ in an original νl neutrino flux is5

〈νl′ | νl〉 =
∑
j

〈νj,l′ |U †jl′e
−iEjtUjl |νj,l〉

=
∑
j

e−iEjtUljU
∗
l′j (15)

where we used the orthogonality relation 〈νj | νk〉 = δjk.

If the experimental conditions permit coherent detection, then in usual quantum mechan-

ical fashion you take the squared modulus of the transition amplitude Eq. (15) to obtain

the probability for the transition:

Pνl→νl′ (t) = |〈νl′ | νl(t)〉|2 =

∣∣∣∣∣∑
j

e−iEjtUljU
∗
l′j

∣∣∣∣∣
2

(16)

The three-neutrino oscillation equation is derived from that equation Eq. (16)6. However,

since we can detect only an average, we cannot sum amplitudes, but instead must sum

probabilities7, i.e., sum the squared amplitudes:

P̄ (νl → νl′) =
∑
j

∣∣ 〈ν ′l | νj〉e−iEjt〈νj | νl〉 ∣∣2 =
∑
j

|Ul′j|2|Ulj|2 (17)

In Eq. (17) the P̄ indicates the average probability (this is the result in equation (14.50)

from §14.7 [24]). Notice the difference between Eq. (16), where the amplitudes are summed

inside the squared modulus, and Eq. (17), where the squared modulus of the product of the

production braket 〈νj | νl〉 and detection braket 〈ν ′l | νj〉 (the probability) is summed.

Note that the exponential phase evolution factor vanishes in a squared modulus, i.e.,∣∣ e−iEjt ∣∣2 =
(√

e−iEjt e+iEjt
)2

=
(√

eEjt−iEjt
)2

=
(√

e0
)2

= 1 (18)

5 See, for example, equation (37) in [31].
6 See appendix Section VII) for details of that derivation.
7 If quantum mechanics is unfamiliar to you, transcripts of Richard Feynman’s 1963 and 1964 lectures on

quantum mechanics at Caltech are available at [34], as are his introductory lectures on physics generally.

Barton Zwiebach’s quantum physics lectures at MIT are useful also [35]
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Then we take the squared moduli of the U transition elements in Eq. (17),

|Ul′j|2|Ulj|2 =
(√

Ul′jU∗l′j

)2 (√
UljU∗lj

)2

= Ul′jU
∗
l′jUljU

∗
lj (19)

For l = l′ = e, Eq. (17) expands to

P̄ (νe → νe) = |Ue1U∗e1|2 + |Ue2U∗e2|2 + |Ue3U∗e3|2

= Ue1U
∗
e1Ue1U

∗
e1 + Ue2U

∗
e2Ue2U

∗
e2 + Ue3U

∗
e3Ue3U

∗
e3 (20)

Replace the Uαj in Eq. (20) with their values from the standard parameterization of the

PMNS matrix:


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3



νe

νµ

ντ

 =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23



ν1

ν2

ν3

 (21)

c12 denotes cos θ12, s13 is sin θ13 and so on. We are not interested in the possibility of CP

violation in the solar context, so just let δCP = 0.

We obtain:

P̄ (νe → νe) = Ue1U
∗
e1Ue1U

∗
e1 + Ue2U

∗
e2Ue2U

∗
e2 + Ue3U

∗
e3Ue3U

∗
e3

= cos4 (θ12) cos4 (θ13) + sin4 (θ12) cos4 (θ13) + sin4 (θ13) (22)

Eq. (22) simplifies to

P̄ (νe → νe) = cos4 θ13

[
cos4 θ12 + sin4 θ12

]
+ sin4 (θ13)

= cos4 θ13

[
1− 1

2
sin2 2θ12

]
+ sin4 (θ13) (23)

where we made the substitution:[
cos4 (θ12) + sin4 θ12

]
=⇒

[
1− 1

2
sin2 2θ12

]
With θ13 = 8.5◦, sin4 (θ13) = 0.00048 and may reasonably be dropped from Eq. (23). With

that value of mixing angle, cos4 θ13 = 0.96 ≈ 1 and may be omitted also in Eq. (23), leading

21



to the PDG two-neutrino low energy solar neutrino survival probability we introduced as

Eq. (14) above:

P̄ 2ν(νe → νe) = cos4 θ13︸ ︷︷ ︸
∼1

[
1− 1

2
sin2 2θ12

]
+ sin4 (θ13)︸ ︷︷ ︸

≈0

' 1− 1

2
sin2 2θ12 (24)

F. conclude small mixing of ν3 in νe explains dominant ν1, ν2

So, for the LER low energy range solar neutrinos, we may reasonably suggest that the

reason the θ12 mixing angle can approximately account for the observed survival probability

≈ 0.55 is that the θ13 mixing angle is very small (which means that the fraction of ν3 mass

state is very small in the electron neutrino, since Ue3 = sin θ13, referring to the U matrix

Eq. (21) above) and so drops out of the averaged (incoherent) survival probability equation

Eq. (24).

G. the high energy region (HER)

On the right side of the Borexino graph above Fig. 1, we see the survival probability

Pee observed by various experiments is ∼ 0.3 in the 10 MeV area (this is the sweet spot for

the SNO experiment, though their threshold is lower, ∼ 5 MeV). The solar neutrinos in

this range are predominantly produced in the β+ decay 8
5B → 8

4Be∗ + e+ + νe with energy

expectation 〈Eν〉 = 6.735 MeV.

This 0.3 survival probability is very close to simply sin2 θ12 = 0.304 for θ12 = 33.48◦.

Why is θ12 again so closely connected to an observed survival probability of solar neutrinos?

The ∆m2
12 oscillation length for a 10 MeV neutrino is ∼ 330 km (about ∼ 10 km for

the ∆m2
13 split), again much smaller than the distance from the Sun to Earth, so detecting

oscillations would again be impossible on that basis alone (and the averaging over the region

of neutrino production in the Sun, ∆R ' (0.04-0.20)R� ' 105 km as we mentioned earlier).

However, there is a much more significant feature for a 10 MeV solar neutrino, i.e., the

matter potential.
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H. matter matters

Consulting the B16(GS98) SSM (Standard Solar Model) again [33], we find that the

8B neutrino production peaks around r = 0.0460 r� normalized solar radius with electron

number density at that location Ne ∼ 5.467 × 1025 cm−3. Using the PDG N res
e equation

above Eq. (13), we see that a 10 MeV neutrino reaches MSW resonance for the ∆m2
12 mass

split at N res
e = 1.1596 × 1025cm−3. The 8B solar neutrino is produced at almost 5 times the

required electron number density for MSW resonance, so we expect the matter potential to

be highly significant.

For the ∆m2
13 = 2.457 × 10−3 eV2 mass split, on the other hand, the required electron

density for resonance, N res
e = 9.2823 × 1026cm−3, is more than ten times the available

electron number density. We understand, then, why ∆m2
13 is not significantly associated

with solar neutrino flavor change in the high energy MSW region.

Consider a 10 MeV 8B electron neutrino weak (flavor) state |νe〉 produced at t = 0. Read

off the νe weak state description in terms of mass states from the top row (Ue1, Ue2, Ue3) of U

in Eq. (21), applied to the mass state column on the rhs, (ν1, ν2, ν3)T (this notation means

to write the elements of this row as a column, i.e., T transpose, since is typographically

inconvenient to include a column inline):

|νe〉 = Ue1|ν1m〉+ Ue2|ν2m〉+ Ue3|ν3m〉

= cos θ12m cos θ13m|ν1m〉+ sin θ12m cos θ13m|ν2m〉+ sin θ13m|ν3m〉 (25)

If you are not familiar with the procedure (matrix vector multiplication) for assigning the

U elements to mass states for a particular flavor state as we did in Eq. (25) (we are using

the same mixing matrix, we have simply transformed the parameters under the influence of

the matter potential, denoted with m subscripts), informally put, think of νe in row 1of the

column vector on the lhs in Eq. (21) ”owning” row 1 of the U matrix on the rhs. To see the

composition of νe in terms of the ν1, ν2, ν3 mass states on the rhs, just pick up that row 1

from the U matrix and place it as a column to the left of the ν1, ν2, ν3 column like this:
Ue1

Ue2

Ue3



ν1

ν2

ν3


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Then read off each row of the two columns as a product, placing a plus sign between each

row so constructed:

νe = Ue1ν1 + Ue2ν2 + Ue3ν3

Similarly, νµ owns row 2 of U , so (if you were interested in νµ ) you would pick up

that second row of U , placing it to the left of the mass state column and then read off the

components as we did with the νe.

Again, the m subscripts indicate that these are states and values in solar plasma, i.e.,

modified by matter effect (increased νe coherent forward elastic scattering potential off

electrons, i.e., from exchange of a virtual W -boson, for νe preferentially in relation to νµ,τ ).

The θ12 mixing angle with matter effect is (we are following §2.3 [28] here, who included the

small correction from the ν1ν3 mixing):

cos 2θm12 =
cos 2θ12 − cos2 θ13ε12√

(cos 2θ12 − cos2 θ13ε12)2 + sin2 2θ12

(26)

where

Ve =
√

2GFNe (27)

and

ε12 ≡
2VeE

∆m2
12

(28)

The matter potential Ve is calculated with Eq. (27) using our test case 8B neutrino with

specified electron density Ne and energy E:

Ve =
√

2GFNe(~c)3 = [
√

2][1.1664 × 10−5 GeV−2][5.467 × 1025 cm−3][1.97 × 10−14 GeV cm]3

We obtain Ve = 6.93 × 10−21 GeV (or Ve = 6.93 × 10−12 eV if you are comparing with the

general potential in solar core given in the literature, i.e., O(10−12 eV), see, for example, pg

20 [31]).

ε12 is then (you see factors converting all energy units to GeV)

ε12 =
2VeE

∆m2
12

=
(2)(6.93 × 10−21 GeV)(10 × 10−3GeV)

(7.5 × 10−5 × 10−18GeV2)
= 1.848

We see the energy units cancel, making ε12 a dimensionless ratio of the matter potential

of the 10 MeV neutrino in 5.467 × 1025 cm−3 electron number density to the ∆m2
12 mass

splitting, 1.848 indicating that the matter potential is nearly twice the mass splitting at

production.
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Plug that value of ε12 into Eq. (26) and obtain the cosine of 2θ12m mixing angle in matter:

cos 2θm12 =
cos 2θ12 − cos2 θ13ε12√

(cos 2θ12 − cos2 θ13ε12)2 + sin2 2θ12

=
(0.3914 rad)− (0.9782 rad)(1.848)√

[(0.3914 rad)− (0.9782 rad)(1.848)]2 + (0.8468 rad)

= −0.83854

The arccos of −0.83854 is 2.56540 rad. Divide by 2 to obtain the θ12m mixing angle with

the calculated matter potential, 1.28270 rad, or ∼ 74◦. That is significant rotation (positive,

counterclockwise) from the vacuum θ12 angle of 33.48◦.

We obtain the θ13m mixing angle with [28]

sin2 θm13 = sin2 θ13(1 + 2ε13) +O(s2
13ε

2
13, s

4
13, ε13) (29)

We already have the Ve potential and merely require ε13:

ε13 ≡
2VeE

∆m2
13

(30)

Inserting in Eq. (30) the previously calculated values, with ∆m2
13 = 2.457 × 10−3 eV2 the

only change from our previous ε12 calculation:

ε13 ≡
2VeE

∆m2
13

=
(2)(6.93 × 10−21 GeV)(10 × 10−3GeV)

(2.457 × 10−3 × 10−18GeV2)
= 0.0564

θm13 is then

arcsin(
√

0.024259) = 0.1566 rad

or 8.9704◦. As expected, the θm13 mix angle has not changed much from the vacuum value

8.5◦, the larger ∆m2
13 mass split requiring more electron density than is available in order

to produce significant rotation.

Referring to Eq. (25) above, we can look at the mass state mix at production for our test

neutrino (equation repeated here for convenience):

|νe〉 = Ue1|ν1m〉+ Ue2|ν2m〉+ Ue3|ν3m〉

= cos θ12m cos θ13m|ν1m〉+ sin θ12m cos θ13m|ν2m〉+ sin θ13m|ν3m〉

25



The square of the mixing elements Ue1m, Ue1m, Ue1m in Eq. (21) with mixing angle in

matter θmjk give the probability fraction for each mass state in the electron neutrino produced

under the specified conditions in the solar plasma (the crowded ket below |νe(Ne, E, t = 0)〉

is intended to remind you that the state of this neutrino at production t = 0 is dependent

on its energy and the local electron density in solar plasma):

|νe(Ne, E, t = 0)〉 =

{ [cos θ12m cos θ13m]2 = [cos(74◦) cos(8.9704◦)]2 = 0.0788|ν1m〉 }+

{ [sin θ12m cos θ13m]2 = [sin(74◦) cos(8.9704◦)]2 = 0.8969|ν2m〉 }+ ⇐=

{ [sin θ13m]2 = [sin(8.9704◦)]2 = 0.0243|ν3m〉 }

We see the 10 MeV 8B electron neutrino consists almost entirely (0.8969 ∼ 90%)) of the

|ν2m〉 mass state.8 Because the solar plasma electron number density decreases smoothly

(approximately as an exponential), the |ν2m〉 evolves continuously (without level jumps) into

the state |ν2〉 at the surface of the Sun and is ultimately detected at Earth as that |ν2〉 mass

state, with the vacuum flavor probabilities assigned to ν2 ([24] §14.8.2.1, [17] § III.D).

To see the probabilities for detection of |νe〉 on interaction with the incoming lone 8B

|ν2〉 mass state , we can dagger † the U mixing matrix Eq. (21) (swap rows and columns,

conjugating any complex elements, but we are setting δCP = 0, i.e., considering U real, so

there will not be any actual complex conjugation),


ν1

ν2

ν3

 =


U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3


︸ ︷︷ ︸

U†


νe

νµ

ντ

 (31)

The elements of U † Eq. (31) above are:

U † =


c12c13 −s12c23 − c12s13s23e

−iδCP s12s23 − c12s13c23e
−iδCP

s12c13 c12c23 − s12s13s23e
−iδCP −c12s23 − s12s13c23e

−iδCP

s13e
iδCP c13s23 c13c23

 (32)

Use the same method we discussed earlier 23 to associate the flavor states νe, νµ, ντ in

the rhs column with the U † row ”owned” by each of the mass states ν1, ν2, ν3 in the column

8 A 2006 study [36] calculated the integrated weighted fraction of ν2 over threshold 5.5 MeV recoil electron

kinetic energy as 91± 2%.
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on the lhs, we find the flavor composition for the |ν2〉 mass state is

|ν2〉 = U∗e2νe + U∗µ2νµ + U∗τ2ντ

We are back in vacuum conditions on Earth, at least as far as a solar neutrino is concerned,

so read off and square the U † elements Eq. (31) (Eq. (32)) using the vacuum mixing angles,

θ12 = 33.48◦ and θ13 = 8.50◦:

|ν2〉 = |U∗e2|2|νe〉+ |U∗µ2|2|νµ〉+ |U∗τ2|2|ντ 〉

= [sin θ12 cos θ13] 2 |νe〉+

[− sin θ12 sin θ13 sin θ23 + cos θ12 cos θ23] 2 |νµ〉+

[− sin θ12 sin θ13 cos θ23 − sin θ23 cos θ12] 2 |ντ 〉

= 0.2977|νe〉︸ ︷︷ ︸
cf Pee∼0.3

+0.3159|νµ〉+ 0.3865|ντ 〉

(33)

We find the single ν2 state detected at Earth produces closely the observed survival proba-

bility Pee ∼ 0.3 of 8B electron neutrinos on the right side of the Borexino graph above Fig. 1.

With the cos2 θ13 = 0.9781 ≈ 1 factor on the |νe〉 ket in Eq. (33) , this survival probability

is produced largely by simply sin2 θ12 = 0.304.

I. single equation, θ12, ∆m2
12 approximates solar νe survival probability

It was easier to address the connection between θ12 and ∆m2
12 and solar neutrino flavor

change separately in the low and high energy regimes, but it is possible to write a single

equation that predicts the survival probability over the entire range in the Borexino graph

above Fig. 1.

As a pedagogical tool, now that we know we must sum probabilities rather than am-

plitudes when coherent detection is impossible (as we discussed in Section V E)), and that

θ13 has a small impact on the detection probability (Section V F), Eq. (33)), we can reduce

to a two-neutrino model (set θ13 = 0 and use the first row of U Eq. (21), producing the

two-neutrino matrix shown in Eq. (2) ) and write for the neutrino ket at production in the

solar plasma:
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|νe(t = 0, Ne, E)〉 =
2∑

k=1

Um
ek|νk〉

= Um
e1 |ν1〉+ Um

e2 |ν2〉

= (cos θm12)|ν1〉+ (sin θm12)|ν2〉

(34)

Basically, the same mixing relations apply, but we use the θm12 mixing angle transformed by

any matter potential that develops at the given density and neutrino production energy.

Then write for detection as νe at Earth:

|νe〉 =
2∑

k=1

Uek|νk〉

= Ue1|ν1〉+ Ue2|ν2〉

= (cos θ12)|ν1〉+ (sin θ12)|ν2〉

(35)

where here we use the vacuum value of the θ12 mixing angle which applies at detection9.

We project the production ket onto the detection ket, square and sum to obtain the

incoherent probability to detect the νe at Earth:

|〈νe | νe(t = 0, Ne, E)〉|2 =
2∑
k

|Uek|2|Um
ek|2

Pee = (cos θ12)2(cos θm12)2 + (sin θ12)2(sin θm12)2 (36)

Using an equation for θm12 without any ν3 factors:

cos 2θm12 =

(
cos 2θ12 − ∆V

∆m2
12

)
√(

cos 2θ12 − ∆V
∆m2

12

)2

+ sin2 2θ12

(37)

where

∆V = 2
√

2GFENe

9 We discovered this technique of taking the product of the moduli squared of the mixing elements at

production with matter effect and the moduli squared of the mixing elements with detection conditions

at Earth in §2.3 of [28], in particular equation (11).
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To avoid having to calculate sin θm12 (or to obtain cos θm12 from cos 2θm12), Eq. (36) can be

rewritten as

Pee =
1

2
(1 + cos 2θm12 cos 2θ12) (38)

Surprisingly, the simplified equation Eq. (38) tracks the 2014 Borexino equation (94) [29]

(which uses the ν3 correction to the cos 2θm12 equation Eq. (26) we presented earlier above

as well as a leading cos4 θ13 adjustment to the probability) fairly well, albeit ∼ 4% higher

survival probability throughout:

Borexino equation (94): P 3ν
ee =

1

2
cos4 θ13

(
1 + cos 2θM12 cos 2θ12

)
(39)

We graphed our two-neutrino equation Eq. (38) and the 2014 Borexino equation Eq. (39)

in Fig. 2 (cf Fig. 1).
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FIG. 2. 2014 Borexino experiment survival probability equation compared to our two-neutrino

simplification (see text for context).

VI. CONCLUSION

We hope we have made some of the calculations involved in solar neutrino flavor change

more accessible and that we have answered the question as to why θ12 and ∆m2
12 are asso-
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ciated with solar neutrinos.

VII. DERIVATION OF THREE-NEUTRINO OSCILLATION EQUATION

We rely on several sources throughout the following derivation: §3.1.1. in [37], Handout

11: Neutrino Oscillations in [25], Appendix A in [38], §14.7 in [24].

We stipulate coherent production and detection of the neutrino. As we stated in Sec-

tion V E), we have the amplitude for finding a νl′ in an original νl neutrino flux:

〈νl′ | νl〉 =
∑
j

〈νj,l′ |U †jl′e
−iφjUjl |νj,l〉

=
∑
j

e−iφjUljU
∗
l′j (40)

where we used the orthogonality relation 〈νj | νk〉 = δjk. The exponential evolution factor

was created as a plane wave solution in relativistic quantum mechanics as shown earlier in

Eq. (4) and Eq. (5). Recall from that discussion 9 φj = xµpµ = Et− ~p · ~x = Et− ~pL in the

argument of the exponential.

Because we have specified coherent production and detection, we take the squared mod-

ulus of the transition amplitude Eq. (40) to obtain the probability for the transition, ac-

knowledging the particular case of three neutrinos:

Pνl→νl′ = |〈νl′ | νl(t)〉|2 =

∣∣∣∣∣
3∑
j

e−iφjUljU
∗
l′j

∣∣∣∣∣
2

(41)

We have a complex identity to assist us here. If you laboriously work out the implicit

general multivariate complex polynomial product |z1 +z2 +z3|2 = (z1 +z2 +z3)(z1 + z2 + z3)∗

(the ∗ indicates the conjugate of the expression) and consolidate the terms using complex

identities you can obtain

|z1 + z2 + z3|2 ≡ |z1|2 + |z1|2 + |z3|2 + 2<(z1z
∗
2 + z1z

∗
3 + z2z

∗
3) (42)

Eq. (42) is usually just offered as an identity, but we were curious where it originated,

so executed the complex product indicated with a CAS (computer algebra system, SymPy

to be specific) and spent some time arriving at the suggested identity. We could not find

any particular label for this identity (hence the mouthful we proposed above “general mul-

tivariate complex polynomial product”). zj ∈ C is a complex quantity, canonically of form
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z = (x, y) = x ± iy, and the notation z∗j indicates the complex conjugate of zj (toggle the

sign on the imaginary term). The modulus or absolute value of the complex quantity is

|zj| =
√
zjz∗j . We intend by the notation 2<(zw∗) that for z, w ∈ C:

|z + w|2 = (z + w)(z + w)∗

= zz∗ + zw∗ + z∗w︸ ︷︷ ︸
replace below as 2<(zw∗)

+ww∗

= |z|2︸︷︷︸
zz∗

+2<(zw∗) + |w|2︸︷︷︸
ww∗

(43)

Preparing to apply the identity Eq. (42), let us define:

z1 = e−iφiUliU
∗
l′i

z2 = e−iφjUljU
∗
l′j

z3 = e−iφkUlkU
∗
l′k

(44)

Note that we can omit the exponential term on any expression where the squared modulus

of z1, z2, z3 arises since −iφ+ iφ = 0 and the exponential becomes simply 1. For example,

zj = UljU
∗
l′je
−iφj

|zj|2 =
(√

zjz∗j

)2

=
(
UljU

∗
l′je
−iφj
) (
U∗ljUl′je

+iφj
)

=
(
U∗ljUl′jUljU

∗
l′j

) (
eiφj−iφj

)
=
∣∣U∗ljUl′j∣∣2 (e0)

=
∣∣U∗ljUl′j∣∣2

Substitute the assigned zj terms from Eq. (44) back into the complex identity Eq. (42)

and obtain:

Pνl→νl′ = |UliU∗l′i|2 + |UljU∗l′j|2 + |UlkU∗l′k|2 +

2<
{
UliU

∗
l′iUljU

∗
l′je
−i(φi−φj)

+ UliU
∗
l′iUlkU

∗
l′ke
−i(φi−φk)

+ UljU
∗
l′jUlkU

∗
l′ke
−i(φj−φk)

}
(45)

Now we consider the probability Pνl→νl′ at t = 0, x = 0. The argument to the exponential

evolution factor, φj = xµpµ = Et − ~p · ~x = Et − ~pL as we discussed earlier 9, is then zero
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(and the exponential then replaced by simply 1), since the neutrino has just been produced

and no time has passed or distance propagated, so phase differences between neutrino mass

states cannot have developed yet (we hope this is persuasive since we simply want to rid

ourselves of these factors for the moment). We note that because U flavor elements are

orthogonal,

Ul1U
∗
l′1 + Ul2U

∗
l′2 + Ul3U

∗
l′3 = δll′ (46)

The squared modulus of Eq. (46) is therefore zero also at t = 0, x = 0 for l 6= l′ and we can

say that the probability of a transition is therefore zero, Pνl→νl′ = 0 at t = 0, x = 0, which

is a reasonable proposition (e.g., an electron neutrino νe is an electron flavor neutrino at

production with probability 1 and another flavor with probability 0, hence the Kronecker

delta statement δll′). We may then write a version of Eq. (45) at t = 0 as:

Pνl→νl′ (t = 0) = δll′

δll′ = |UliU∗l′i|2 + |UljU∗l′j|2 + |UlkU∗l′k|2 +

2<
{
UliU

∗
l′iUljU

∗
l′j + UliU

∗
l′iUlkU

∗
l′k + UljU

∗
l′jUlkU

∗
l′k

}
|UliU∗l′i|2 + |UljU∗l′j|2 + |UlkU∗l′k|2 = δll′ − 2<

{
UliU

∗
l′iUljU

∗
l′j + UliU

∗
l′iUlkU

∗
l′k + UljU

∗
l′jUlkU

∗
l′k

}
(47)

Eq. (47) allows us to replace

|UliU∗l′i|2 + |UljU∗l′j|2 + |UlkU∗l′k|2

in Eq. (45) with the rhs of Eq. (47) to obtain:

Pνl→νl′ = δll′ − 2<
{
UliU

∗
l′iUljU

∗
l′j + UliU

∗
l′iUlkU

∗
l′k + UljU

∗
l′jUlkU

∗
l′k

}
+

2<
{
UliU

∗
l′iUljU

∗
l′je
−i(φi−φj)

+ UliU
∗
l′iUlkU

∗
l′ke
−i(φi−φk)

+ UljU
∗
l′jUlkU

∗
l′ke
−i(φj−φk)

}
(48)

Now we combine the two expressions with real U expressions in Eq. (48) to obtain:

Pνl→νl′ = δll′ + 2<
{
UliU

∗
l′iUljU

∗
l′j[e

−i(φi−φj) − 1]

+ UliU
∗
l′iUlkU

∗
l′k[e

−i(φi−φk) − 1]

+ UljU
∗
l′jUlkU

∗
l′k[e

−i(φj−φk) − 1]
}

(49)

32



Note that some choose to write instead [1− e−i(φi−φk)] above, requiring a minus sign on the

2< expression instead of the positive sign. The signs in the final form of the equation remain

the same (but if you convert the cosine in the transform below to a sine you will change the

sign on the < portion to negative).

We will transform the exponential expression in brackets in Eq. (49) using Euler’s formula:

e−iθ = −i sin (θ) + cos (θ) (50)

e−i(φj−φk) = cos (φj − φk)− i sin (φj − φk)

Applying those two transforms to Eq. (49) we have:

Pνl→νl′ = δll′ + 2<
{
UliU

∗
l′iUljU

∗
l′j[cos (φi − φj)− 1]

+ UliU
∗
l′iUlkU

∗
l′k[cos (φi − φk)− 1]

+ UljU
∗
l′jUlkU

∗
l′k[cos (φj − φk)− 1]

}
− 2=

{
UliU

∗
l′iUljU

∗
l′j[sin (φi − φj)]

+ UliU
∗
l′iUlkU

∗
l′k[sin (φi − φk)]

+ UljU
∗
l′jUlkU

∗
l′k[sin (φj − φk)]

}
(51)

Note that the bracketed expression in Eq. (49) above became cos (φj − φk)−i sin (φj − φk)−1

and we chose to distribute the −1 with the cosine real expression rather than the imaginary

group (as is always the case in the literature) in Eq. (51).

Now that we have shown clearly the terms in the steps leading to Eq. (51) , we will

consolidate the quartets (the UljU
∗
l′jUlkU

∗
l′k terms) in summations:

Pνl→νl′ = δll′ + 2<
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[cos (φj − φk)− 1]

− 2=
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[sin (φj − φk)]

(52)

Now we replace (φj − φk) with

∆jk =
∆m2

jk

2E
L
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in Eq. (52) (derived in detail earlier in Section IV):

Pνl→νl′ = δll′ + 2<
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[cos ∆jk − 1]

− 2=
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[sin ∆jk]

(53)

We can replace ∆jk in Eq. (53) with the explicit
∆m2

jk

2E
L to obtain a form as it is often

presented:

Pνl→νl′ = δll′ + 2<
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[cos

∆m2
jk

2E
L− 1]

− 2=
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[sin

∆m2
jk

2E
L]

(54)

You also see Eq. (54) written with the cosine converted to a sin2 term using 1−cos(2θ) −→

2 sin2(θ):

Pνl→νl′ = δll′ − 4<
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[sin

2
∆m2

jk

4E
L]

− 2=
∑
j>k

UljU
∗
l′jUlkU

∗
l′k[sin

∆m2
jk

2E
L]

(55)

The sign on the imaginary expression should be negative in either case (and positive for

antineutrinos). Occasionally you find this written erroneously with a plus sign in the litera-

ture10. Correct versions include equation (51) in[31], [37] equation (3.11) (though you may

be put off by the use of quartet notation),

10 In [38] equation (A-18) for example.
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