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Chapter 1

Introduction

Isabelle/HOL[1] is an interactive proof assistant using the Isar proof lan-
guage, which combines English, logic and programming to read like a formal
proof in mathematics. Other proof assistants include Coq, home website [6],
compared with Isabelle in [7]).

A general definition of proof assistant might be [3]:

Proof assistants are computer programs that assist computer
scientists, mathematicians and logicians in defining concepts
and proving properties about them. Furthermore, they en-
sure correctness of the proofs that are constructed.

Isabell, in its Isar incarnation, “is mostly concerned about proof docu-
ments, i.e. the real sources of some formal reasoning, in a form that is both
human-readable and machine checkable.” [27]

HOL1 is the Isabelle implementation of higher-order logic, “a polymor-
phic version of Church’s Simple Theory of Types . . . best understood as a
simply-typed version of classical set theory.”[15] By “simple type theory” is
meant that

Types can take types as parameters but not integers for ex-
ample. The type of finite sequences (known as lists) takes
the component type as a parameter, but there is no type of
n-element lists. Logical predicates form the basis of a basic
typed set theory, where any desired set can be expressed by

1Isabelle provides several logic systems, with HOL being the best developed at this time.

It includes an extensive library of concrete mathematics, as well as packages for concepts like

co-inductive sets and types, and well-founded recursion. Sample proofs are provided.[15]
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1. Introduction 2

comprehension over a formula. We can define the set of n-
element lists where the elements are drawn from some other
set. Thus, the simple framework given by types can be re-
fined through the use of sets.[14]

The process of writing a proof in Isabelle involves the user specifying each
step (helped by the Isar extension of Isabelle that hides the complexity of the
underlying ML implementation2), testing with one of many automatic proof
methods, which also suggest applicable lemmas, and chaining the proven
steps together.[3] As Wenzel puts it, this follows the tradition of “honest
toil” as proposed by Bertrand Russell, with results derived from definitions
of proper theorems (more than postulated axioms) in structured human-
readable proof-documents (beyond mere machine scripts) relying on a strong
type-safe ML logical core.[27]

The standard user interface for Isabelle is now jEdit, a GUI (graphical
user interface) normally referred to as the PIDE, i.e., Prover Integrated
Development Environment [4].

There are hundreds of pages of documentation provided with the Is-
abelle package download, but from our own experience we find that it is
almost impossible to learn how to actually use Isabelle by simply reading
them.3 Accordingly, we are going to take the approach here of presenting a
simple mathematical proof and the interactions we made with Isabelle/HOL
(we may refer to this application throughout as Isabelle or the jEdit user
interface) to formalize this proof within the Isabelle context.

Why is there no tutorial included with the Isabelle system? There is one
document included, A Proof Assistant for Higher-Order Logic [29], which
is described as a tutorial, “a tutorial on how to use the theorem prover Is-
abelle/HOL as a specification and verification system” (to verify software,
that being one of the initial motivations for developing automated proof
systems, Intel having lost a half billion dollars over the 1994 bug in the Pen-
tium floating point division unit[14]). However, the thrust of that article

2Scott’s Logic of Computable Functions (LCF) appeared in 1969. Around 1977 Robin Milner
and his group developed Edinburgh LCF, a programmable proof checker. The meta-language

of Edinburgh LCF, i.e., ML, provides not only a program execution language, but a general
representation of logic in which inference rules are functions from theorems to theorems and

theorems can be built only by applying validated rules to existing theorems.[17] Inference rules
are represented literally as a list of premises and a conclusion. The basic idea of Isabelle is to

construct proofs by unifying the conclusion of one rule with a premise of another.[18]
3Perhaps we have provided a hint of the complexity of the Isabelle system in the brief

comments and footnotes thus far. We believe it is easier to learn to use Isabelle first, by going

through some of the many proofs provided. If you want to learn more about the design and

implementation later, the documents available will more than accommodate you, though that
does require some ability and desire to form a wide and deep conception of the system (cross-

referenced among 20 or more documents provided with the system, each giving pictures of different

levels of abstraction and stages of development) as it evolved over the last three decades or more.



1. Introduction 3

is functional programming rather than mathematical concepts, and is quite
unusable as a general tutorial, as the authors acknowledge in their intro-
duction, instead referring the reader to four additional documents (none of
which are really tutorials either, but are helpful in understanding the system
once the user has gotten his feet wet, so to speak). The best tutorial we have
encountered was “aimed at mathematicians who would like to use it for the
formalization of mathematical results,”[22] though slightly out-of-date and
not using the current interface jEdit (nevertheless, very usable).

Our goal will be to provide a tutorial that walks a newcomer to Is-
abelle/jEdit step by step through the construction of a simple mathematical
proof, providing frequent screen shots and discussion to assure the reader
is on board. The reader is strongly encouraged to enter and execute the
theory lines in an open jEdit/Isabelle session, there being no substitute for
learning by doing in this context. We will provide frequent cites to relevant
Isabelle documentation titles and sections in an attempt to provide some-
what of a topic index into the twenty or more portable document format
references accompanying the distribution (as we noted above, this system
is wide and deep). We include cites to a number of external papers by the
Isabelle developers also.



Chapter 2

Square Root of Two

2.1. Background

Our test case here is concerned with that venerable question, “Can one find
a rational number whose square is precisely the number 2?” This was the
issue that supposedly caused much upset to the Pythagoreans1:

Recall that a fraction—that is, a rational number—is some-
thing that can be expressed as the ratio a/b of two integers (or
whole numbers) a and b, with b non-zero . . . The Pythagore-
ans had originally hoped that all their geometry could be ex-
pressed in terms of lengths that could be measured in terms
of rational numbers . . . If all geometry could be done with
rationals, then this would make things relatively simple and
easily comprehensible. The notion of an “irrational” number,
on the other hand, requires infinite processes, and this had
presented considerable difficulties for the ancients (and with
good reason).[5]:

From the Pythagorean theorem 2b2 = a2, a square (in Euclidean ge-
ometry) with unity side length b = 1 would have a diagonal of a =

√
2.

1Burgess points out that we do not have much information about Pythagoras, other than

comments by those writing generations following his death.[10]. However, it is generally agreed
that “[Greek] geometry developed itself for some time on the basis of the numerical proportion
which was inapplicable to any but commensurable magnitudes, and that it received an unexpected
blow later by reason of the discovery of the irrational.”[11] See also [12]. We mean by lengths a
and b “commensurable” that a common measure, e.g., a ruler, could be positioned end-to-end m

times to measure length a exactly and n times for length b, where m,n are whole numbers and
the resulting ratio is a:b = m:n [10].

4



2.2. Implement in Isabelle 5

The problem is usually then stated as “If
√

2 is rational, then the equation
a2 = 2b2 is soluble in integers a, b with gcd(a, b) = 1”2.

We will prove that the square root of any prime number (where a prime
number is a positive integer greater than 1 whose only factors are 1 and
itself3 is irrational and then simply note that 2 is a prime number, mak-
ing its square root irrational. We follow one of the Isabelle/HOL theory
files (with file extension .thy) that accompany the Isabelle distribution, i.e.,
HOL/ex/Sqrt.thy, which contains several proofs, each using somewhat dif-
ferent Isabelle methods. The mathematical (in human language) statement
of our theorem and proof is:

Theorem 2.1. If p is prime, i.e., p ∈ Z>0 with p > 1 and having only
factors 1 and itself, then

√
p /∈ Q, where Q = {ab | a ∈ Z and b ∈ Z and b 6= 0}

and there is a unique (reduced) representation such that gcd(a, b) = 1, i.e.,
(a, b) are relatively prime:

Proof. Assume on the contrary that
√
p ∈ Q: Then ∃m,n ∈ Z with n 6= 0

such that
√
p = m/n with gcd(m,n) = 1, i.e., (m,n) are relatively prime.

In that case, m = |
√
p|n. It follows that m2 = (

√
p)2n2 and m2 = pn2. In

that case we may say that p|m2 and also that p|m, since a prime divisor of a
product of integers must divide one of the integer factors, which are identical
in the case of a square. That being so, there must be an integer k such that
m = pk. Since we established that m2 = pn2 and we can square m = pk to
obtain m2 = p2k2, we have pn2 = p2k2. We can divide that last result by
p to obtain n2 = pk2. That tells us that p|n2 and therefore p|n (as above,
prime divisor of product of integers divides at least one of the factors). We
have therefore shown that p prime divides both m and n and therefore must
divide the greatest common divisor of m,n, i.e., p|gcd(m,n). However, we
stipulated that m,n are relatively prime, i.e., that gcd(m,n) = 1. In that
case, p = 1, a contradiction since we stated p is prime and must therefore be
greater than 1, i.e., p > 1 by definition of primality. Our assumption that√
p ∈ Q is therefore false and therefore

√
p /∈ Q. �

2.2. Implement in Isabelle

Let us now develop the SqrtTutor1.thy theory Isabelle implementation of
the proof 2.1 above for Theorem 2.1, discussing the output state and context
for each step in the automation of the proof. We will include various screen
shots (which should be of sufficient resolution that you can zoom in your

2Edited from Theorem 43 in Hardy and Wright An Introduction to the Theory of Numbers

as quoted in [13]
3For our context, where irreducibility and primality occur together in the positive non-zero

subset of Z we can also say that if a prime divides a product then it always divides one of the
factors of the product.[13]
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pdf viewer to see detail) and text from Isabelle/jEdit. As we mentioned
earlier, we may refer to jEdit or Isabelle depending on whether we refer
specifically to Isabelle processing or procedure or whether to direct input
to, or observer output from, the jEdit interface window. If you are using a
previous or later edition of Isabelle you may encounter slight differences in
syntax (which jEdit will nag you to fix) or display.

When you start the Isabelle application, by default you will be edit-
ing the empty Scratch.thy theory 1 (the image resolution is sufficient to
permit zooming in your viewing application for detail). Rename that to
SqrtTutor1.thy and Save or Save as, the latter option giving you the op-
portunity to note where the file is being saved or change that location.

Figure 1. Initial screen upon opening Isabelle/jEdit.

The large central pane4 in the jEdit window is referred to as “the main
text area“ in the Isabelle/jEdit document[23] by Makarius Wenzel that is
included with the Isabelle distribution package, filename jedit.pdf (we rec-
ommend you keep that document handy). We will refer to the main text
area as simply “the edit area” (or the edit pane). For Isabelle to recognize
our work as a theory we must include a line in the theory file associating the
overall theory document with the name of the file itself (without extension).
Accordingly, type in the edit area:

theory SqrtTutor1

imports Complex_Main "HOL-Computational_Algebra.Primes"

begin

4Throughout the official documentation for jEdit, [23] and in §2.2 in particular, these sub-

sections of the overall jEdit graphic user interface screen real estate are referred to as panels when
docked (and floating windows if undocked). We prefer the term pane, perhaps because of the

more direct window connotation, i.e., the view port for a particular functional division of the
jEdit application (“you say potāto, I say potäto”).
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theorem

end

The imports command reads in two background theories that we will
require in our own theory. We are cheating here in that we already knew we
would need these two theories. It could be that you were beginning entirely
de novo and would have to search for additional background theory support
you need to construct your own proof. The amount of preloaded support
that Isabelle includes is prodigious and that may also be supplemented by
the Archive of Formal Proofs. On a Linux machine it is fairly easy to rapidly
search for theory filename patterns or even to search in a few seconds all of
the text of the thousands of theories for terms of interest, e.g., ::nat if you
were interested in definitions and properties declared regarding the type of
natural numbers in Isabelle. On a Windows box you can still search theory
filenames and jEdit itself can search its current session.

From the Isabelle document The Isabelle System Manual5, Chapter 2,
we are told that an Isabelle session consists of a collection of theories in
a hierarchy based on a major object logic like HOL (itself built on a com-
bination of Pure and the ML of the kernel). This provides the background
that is required for formulating statements and composing proofs, acting as
a medium to produce formal content, depending on earlier material (dec-
larations, results etc.), paraphrasing from another Isabelle document, The
Isabelle/Isar Implementation, filename implementation.pdf.[24]

The HOL session is pre-built as a persistent heap image that loads on
invocation of Isabelle (unless you choose to work in another of the logic
modules included with Isabelle, e.g., ZF or Zermelo-Fraenkel Set Theory).
To build such a session from scratch takes some time, even given with heavily
parallel processing used by Isabelle code, on a machine with 8 cores and
8 GB of RAM (considered as a “small” machine environment in the Isabelle
context; we can testify that we barely get by with 8 cpu threads on 4 physical
cores and 4 GB of RAM running Linux). As we said though, HOL is already
built and our imports line above only brings in a few more theories with
material pertinent to our own application here.

This theory-imports-begin-theorem-end block you typed in above
constitutes the top level specification for our theory.6 We emphasize again

5Provided as file system.pdf in the Isabelle distribution.[25]
6Each theory container is derived from a certain sub-graph of ancestor theories. The begin

operation starts a new theory by importing and merging contents of parent theories, entering
incremental update mode until the final end operation is performed. All of this occurs in the

internally bootstrapped Isabelle logical context acting as the background required to formulate
statements and compose proofs. Derivations within this logic context can be described as a
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that the name following theory must be the actual name of the file on the
computer that you save the statements to (Figure 2). That is SqrtTutor1.thy
(that is a 1, not a lower case “l”, because this is the first tutorial) in the
instant case, but do not include the suffix .thy. Do include the suffix in the
computer file name when you Save. We are belaboring this point here be-
cause inattention to detail can cause jEdit to refuse to cooperate with you,
and little is as frustrating as being unable to follow even the initial steps of
a tutorial (which might cause some to simply discard the software).

Figure 2. Saving the theory file under new name, being mindful of path.

Similarly, assure that you place the imports line prior to begin above.
We technically enter proof mode with the statement theorem. That could
include a name if we planned to refer to it later7, e.g.,

theorem irrat_sqrt_prime.

You may find jEdit displaying complaints now in the Output pane below
the edit pane rather than an acknowledgment of the proof state:

Outer syntax error: proposition expected,

but end-of-input was found

We note that there is a little “up spade” symbol in that output above,
but we do not have the Isabelle fonts8.

judgment Γ `Θ ϕ, meaning that proposition ϕ is derivable from hypotheses Γ within the theory

Θ.[26]
7jEdit/Isabelle should notify you if it recognizes that name as already in use, but it is probably

better not to name experimental work not intended to be used by other theories.
8Isabelle can print LATEX typeset pdf, in fact most of the system documentation was produced

in Isabelle, but it is an incredible chore at this time, involving batch modes, special session builds

that can take off unexpectedly, directory and file creation and movement and adjustment; they
hope to make this a simple one-button task from jEdit eventually. In the meantime, jEdit will

print a usable browser preview of the current main edit buffer using Unicode characters, which we
save as html or print to pdf from the browser, e.g., Chromium, and find useful for later reference.
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The downside of the continuous proof checking with asynchronous user
interaction9 is that you must immediately learn to ignore the jEdit com-
plaints, whether in the Output pane below the edit area, or manifested as
red fonts or other signals in the edit area, until you have completed mul-
tiple commands or token entry. You can disable this continuous backseat
driving by jEdit by unchecking Auto update, but it is very useful (when
you are ready for it) and also efficiently uses cpu resources. We keep the
Proof state checkbox checked also, preferring to see that state in the Out-
put pane also, but unchecking it relegates that information to one of the
side panes on the right of jEdit, where you can instead choose one of those
tabs to look at it when you are ready.

In the present circumstances, jEdit knows that additional commands or
parameters should follow, in particular that we should provide a proposition
(per Output pane message above), having set up a theory block. We note
that jEdit highlights (in red) questionable syntax in the edit area. The
individual tokens in the edit area will appear blue, green, or other less
angry colors10 once they are accepted in the continuous parsing and checking
underway.

Let us now follow the proof 2.1 above for Theorem 2.1, making our initial
assumption and plan known to Isabelle by typing in the edit area of jEdit,
following theorem

assumes "prime (p::nat)"

shows "sqrt p \<notin> \<rat>"

Notice that as you type in the assumes proof command of the top-level
Isar engine responsible for theory and proof elements, jEdit colors it green
to indicate to you that it understands what you are trying to do (and the
theorem token previously typed above should be colored blue once jEdit
has enough input to approve of your structure). For the quoted expression
following, we usually type both quotation marks for the inner syntax Is-
abelle types and terms expressions11 together, e.g., “”, and then fill in the
expression to be quoted, here prime (p::nat).

With the first line of the last typed input, we are telling Isabelle that
we are assuming the variable p to be a prime number of type nat (type two

9The Isabelle prover works in parallel on multiple cpu cores, providing feedback in the jEdit
output pane and edit area, while accepting new user input asynchronously.[23]

10Depending on the revision date of Isabelle, the operating system environment, and possibly
your own customizing, the colors may not be exactly identical to ours.

11They are not strings, but expressions of Isabelle types and terms of the logic, so-called
inner syntax which are combined with the theory source commands of Isar (outer syntax), i.e.,
the specifications and proofs. Chapter 3 of The Isabelle/Isar Reference Manual [24] discusses this

in more detail, but we recommend to pursue detail only after obtaining some familiarity in use
here.
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colons to connect the type with the variable name) for natural number.12

You should see jEdit indenting the statement a few spaces from the outer
theorem line automatically to make the block structure clear. After hitting
the Enter key on the keyboard, we typed the shows line above, which should
also be colored green and indented to the same level as assumes.

After you typed sqrt p you should have observed p turn blue to indicate
that Isabelle recognizes it as a free variable (which was declared on previous
line to be a prime number). If you are a touch-typist, you should consciously
slow down when beginning to type a symbol like the \<notin> (referring to
the relation “not in set” or “not a member of”) or \<rat> for rational
numbers Q. Looking at the screen shot, you see after we have typed \<not

or so, jEdit pops up a tooltip box with suggestions as to what symbol(s)
you might want here (zoom your display of this tutorial if necessary), also
complaining of malformed command syntax through the Output pane below.

Figure 3. Popup menu offers to help insert commands.

You can left-click (or equivalent for your interface device) one of the
choices in the popup menu with the mouse or buttons on your touchpad,
or you may use down-arrow (on your keyboard) to scroll down to the next
possibility to highlight it in blue. You can hit the Tab key on your keyboard
to cause that selection (it will be highlighted blue if it is selected) to be
inserted at that point in the edit window (if you did not already left-click
with mouse). You obtain the same assistance when typing the code \<rat>

for the Q symbol for the set of rational numbers.

If you do not know the code for the desired symbol, you can use the
Symbols tab at the bottom of the jEdit window, switching the lower pane

12We specified positive integer in our earlier proof statement, but this is synonymous and
easier in this context.
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display from Output to Symbols. Then select what kind of symbol you are
after, “Letter” in this case. Scroll down to the line with the blackboard
outline Q and hover your cursor above that key on the display to have the
code pop up. At this point you can simply left mouse click that key and
jEdit will insert the symbol at the current position in the Edit pane above.
As you begin to recall the codes (from repeated encounters in your Isabelle
work) you can skip this and just type enough of the code to obtain the
suggestion popup as we described above.

The Output pane (select that tab at the bottom of jEdit pane where
you were looking at Symbols) in jEdit may show various complaints while
you finish typing, but if you satisfy the syntactic and logical requirements,
the complaints (and pink highlighting) should disappear, to be replaced, in
the present context, by the proof state (which is “prove”):

proof (prove)

goal (1 subgoal) :

1. (sqrt p) /∈ Q

You could also see the current proof state (the information above) of
the Isabelle/Isar engine by selecting the right pane tab “State.” Because we
have selected the checkbox for proof state, the Output pane below our edit
area also displays this proof state information along with error messages.
Perhaps you would prefer to see only error messages in the low pane and
look to the right to see state (we prefer state and error message together in
the Output pane).

You can also select Sidekick mode in that right pane, which shows an
outline of the theory document you are entering. When you initially type in
the imports statement discussed above, you can go to this right pane and
select the “Theories” tab to see the theories that Isabelle loads as a result
and the progress of that load (see screen shot 4, which includes some lines
we have not typed yet13). There is so much information available in this
jEdit appliance that you really have to treat it like the instrument panel
in an airplane cockpit, scanning around the available indicators for changes
or exceptions and focusing on indicators connected with your immediate
actions and needs.

Isabelle has informed us we are in prove state, so let us type proof on
the next line in the edit area and hit carriage return. The Output pane

13We remind you that the images are of sufficient resolution that you may zoom in with your
pdf viewer to see details.
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Figure 4. See Theory load status in right pane with Theories tab selected.

proof status changes to

proof (state)

goal (1 subgoal) :

1. (sqrt real p) ∈ Q =⇒ False

In other words we are now in state mode, where Isabelle/Isar is ready
to accept declarations and claims supporting our goal, the statements we
want to prove. The Isabelle/Isar system maintains a proof state, i.e., a set
of premises and a set of goals, the statements to be proved. The final proof
will set out the sequence of inference rules, that are applied to the proof
state to reach the goals. The Output pane text tells us that we are working
on the primary (outer indent level in the theorem block structure) goal, i.e.,
to prove ¬

(
∀p(prime)(

√
p ∈ Q)

)
.14

Following our original statement above for Theorem 2.1, let us establish
the fact that if p is prime, then p should be greater than 1, 1 of course
not being prime by definition (this fact will be used in the proof, but was
stated in the theorem 2.1 proper earlier). We type on the line following
proof, the token from and then, slowly as before to give jEdit time to
pop up a suggestion, \<op, whereupon jEdit pops up a tool tip suggesting
< (symbol "\<open>"). This is what we want, so hit the Tab key or click
on the suggestion with the mouse to insert it. Now type prime (no quotes),
space, followed by p, then begin to close the term with \<cl and jEdit will

14Why does the Output pane message imply that Isabelle believes our variable p is real?
The square root operation in Isabelle/HOL is defined only for real numbers to our variable is

temporarily coerced to that type. You might view numeric types forming an inclusion chain

nat @ int @ rat @ real @ complex where types on the left can be transferred to the type on
the right with the corresponding characteristic algebraic structures.[8] See also [24] discussion of

coercive subtyping, [9] definitions for overloaded functions, and a comprehensive examination of
the subject in [16]. We discuss this issue again farther below.
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suggest \<close>, which is correct, so Tab or click on it to insert the closing
angle around prime. Note that quotes and cartouche angle bracketing are
synonymous in this context, but you must use quotes around module imports
like HOL-Computational Algebra.Primes at the top of our theory document
(Computational Algebra is a module, i.e., in a subdirectory within HOL,
while Primes is a theory found there and has a suffix .thy on the disk).

What we are doing with from prime p is telling Isabelle to take note of
the fact that p is prime and then prove the inference (which we will type in
shortly) that p must therefore be greater than 1.15

jEdit should indent from and remainder of the statement, coloring from

and our free variable p blue. With cursor now just following <prime p >,
the Output pane now tells us:

proof (chain)

picking this :

prime p

Isabelle/Isar is telling us that we are now in an intermediate state (chain)
between proof (state) and proof (prove), that is, the immediate claimed
fact (i.e., that p is prime) has just been picked up in order to support an
expected claim. See Figure 5 (zoom for detail), which provides a visual
interpretation of processing the Isar proof language (our typed input) as
transitions of the Isar virtual machine , similar to the evaluation of algebraic
expressions on a stack machine (figure and description from §2.2.3 of the Isar
Reference [24]).16

Figure 5. Modes of the Isar virtual machine.

15The keyword from is an abbreviation for note a then, i.e., note this fact a then proceed to
the inference we would like to draw as a new fact in our collection.

16You may want to refer back to this diagram whenever we mention state transitions in order
to build a conception of our interaction with Isabelle.
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Our claim is that “if p is prime then 1 is less than p,” so type: have

p: “1 < p” (that less-than symbol < can be typed with standard keyboard;
enclose “ 1 < p” in quotations or cartouche it with \<open>\<close> as
we did above) to complete the line. The p: portion is simply a label so we
may refer to this fact later on in our proof once the fact is established. Your
jEdit window should like like this screen shot 6.

Figure 6. Status of jEdit session at line 8.

Note that the Output pane has updated to:

proof (prove)

using this :

prime p :

goal (1 subgoal) :

1. 1 < p

Isabelle/Isar is informing us that it has transitioned to prove mode using
the fact that p is prime, with the subgoal of proving that necessarily 1 < p.
How do we prove this? We know by the definition of a prime number that
this is true if p is prime, but we do not know how Isabelle/Isar characterizes
that fact. If we switch the lower pane from Output to Query and select Print
Context (with context, terms and theorems checkboxes checked, and hit the
Apply button to update that pane), we see that the ?thesis is now 1 < p,
i.e., that is now the innermost chain conclusion we want to prove (refer
to jEdit window screen shot 7). Again, these screen shots have sufficient
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resolution that you may zoom your pdf viewing application to see details
clearly.

Figure 7. Context at line 8 awaiting proof 1 < p.

There are a couple of paths we can take (short of text searching the
entire HOL folder on the computer for term “prime” or the like). If we
return the bottom pane to Output tab and type solve direct on the next
line in the edit area, Isabelle checks whether the current subgoals can be
solved directly by an existing theorem (the theories available in our context
are shown in the right pane17, Theories tab, one of which, for example, is
Primes). In the Output pane after we type solve direct, we see 8)

Figure 8. solve direct suggestion for proving 1 < p.

The Output pane suggestion is that we might be able to prove our sub-
goal using a rule, prime gt 1 nat, in the Primes theory file (notice the

17Those theories supplement the large body of theories loaded on invocation of Isabelle in
the heap image for HOL.
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Theoryfile.rule format of the suggestion).18 Another way to obtain that
solution suggestion would be to erase the solve direct line in the edit area,
then switch from the Output to the Query tab on the lower pane. Then se-
lect the Find Theorems tab and type solves in the Find entry field and
click on Apply. That also suggests the prime gt 1 nat rule, as you can see
in the screen shot 9

Figure 9. Query Find suggestion for proving 1 < p.

So how do we tell Isabelle to attempt to solve the current subgoal using
this rule? In human natural language we could say we would like to prove
that the prime is > 1 “by the rule” prime gt 1 nat. In §2.3.2 in the Isar
Reference [24] we see examples using that idiom have by (rule). Let us then
type by (rule prime gt 1 nat) at the end of our current line in the edit area.
Looking at the screen shot 10, we see the Output pane now acknowledges
we have (1 < p) available as a fact19 and the goal state reverts to the outer
block primary goal,

√
p ∈ Q =⇒ False:

It is worth digressing for a moment to look at the source of the lemma we
just used to establish our fact that 1 < p. If you click on the File Browser tab
on the left hand side of the jEdit window, you will open that pane and obtain

18For your information, the long outline arrow =⇒ in the Output pane description of what
the suggested rule could do for us is part of the Isabelle framework, structuring theorems and

proof states, separating assumptions from conclusions as in [A1; . . . ;An] =⇒ A, or in the present

case, object ?p (the question mark denotes schematic variable that is populated per the logical
context) with property prime implies the property (1 < ?p) See §2.4.1 in [26] and Chapter 3, and

§10.3 in [20] (that entire paper is useful). It is not the implication −→ symbol that is part of the

HOL logic (see §2.1.1 in [28]).
19You could also examine the local facts using the lower pane Query tab and clicking on

Apply in Print Context to refresh that display. The local facts listed are now both that p is prime
and that 1 < p.
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Figure 10. Prove prime implies 1 < p by rule.

(to the left of the edit area in jEdit) a Path field, below that a hierarchy of
folders below the Path, and below that still another unfolding pane where
you can open the selected folder to locate the theory file of interest (which
we double-clicked to open) 11

Figure 11. File Browsing in jEdit to examine the Primes.thy file.

Note that we temporarily closed20 the lower pane in jEdit (you can still
see the lower pane Tabs at the bottom of the screen), as well as the right

20All of these panes close if the active tab is clicked, in this case Output. Once they are
closed, you can open them again by another click.
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hand pane (where you could still see the tabs of that pane at the right except
for the fact that we cropped the image) in order to provide more space for
the display of the Primes.thy file. If you scroll down the Primes.thy file in
the edit area you can find the prime gt 1 nat lemma 12. You can see that
this lemma in turn is proved using another lemma, prime ge 2 nat, proven
earlier in the Primes.thy file.21

Figure 12. Scroll down Primes.thy file to lemma of interest.

Let us return to our work on the SqrtTutor1.thy theory. Go to jEdit
File−→ Close global to close Primes.thy and delete it from the jEdit buffers,
at which time our SqrtTutor1.thy will reappear in the edit area. Then click
on the left hand File Browser tab to close that pane. Then click on the
Output tab at the bottom of the jEdit window to open the Output pane
again. Finally, click on the right hand tab Theories to open that right hand
pane again. We hit the Enter key on the keyboard to position the cursor at
the next line in the edit area.

Proceeding with the proof 2.1, we will assume that, contrary to our
thesis,

√
p ∈ Q. Type in the edit area assume ”sqrt p ∈ Q”.22

Type on the following line then obtain m n :: nat where. Then type23

n: "n \<noteq> 0" and sqrt_rat: "\<bar> sqrt p \<bar> = m / n"

We gave you the command code for the absolute value bars in that last line.
You cannot simply type the absolute value | vertical bars (to surround sqrt

p) on the keyboard. You can also go to the Symbols tab on the lower pane
(below the edit pane) and select the Punctuation tab, where you will find
the broken vertical bar. You can click on it to insert the symbol at the
present cursor location in the edit pane, or you can take note of the code
displayed when you hover cursor on the button (and then type that in as
we did). Similarly, instead of the code for 6= we typed, you could go to

21We mentioned in the Introduction 1 that this is the LCF way, i.e., inference rules are

functions from validated theorems to theorems.
22You may need to return to the first few pages of this section 2.2 where we discuss quoting,

cartouches, tooltips, etc. if you have a problem here. The index following this tutorial document

proper is hyperlinked by term to the relevant pages, which might be another way to quickly refresh
your memory of details.

23We are following our proof 2.1, knowing that if
√
p ∈ Q, ∃m,n ∈ Z with n 6= 0 such that√

p = m/n.
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the Relation tab in the Symbols pane and locate that symbol, which can
be inserted at present cursor location in edit pane, or the command code
displayed on hover. As earlier, you can type quote marks as we show above,
or when you begin to type a quote then accept the \<open> suggestion that
pops up on tooltip (and then the matching \<close> when you type the
closing quotation mark).

Follow that line with another line, and "coprime m n"24 to obtain 13:

Figure 13. Subgoal proposed to obtain some facts from assumption√
p ∈ Q.

Looking at the Output pane at the bottom of the screen, we see our
input has set up a new subgoal, i.e., to establish that our assumption

√
p ∈ Q

allows us to infer that the absolute value of
√
p can therefore be represented

by a ratio of two non-zero natural numbers (or positive integers) m/n where
gcd(m,n) = 1, i.e., (m,n) are coprime. Let us return to the Query pane
(lower pane, click on Query tab) and see if Isabelle might give us a suggestion
from selecting the Find Theorems tab, typing solves in the Find entry field
and clicking on Apply (as we did earlier). We obtain the suggestion 14:

We see in the screen shot 14 that Isabelle believes (see the Query pane)
the rule

Rats abs nat div natE

is a good schematic fit for our current subgoal, noting that the ?x schematic
variables in the rule match the positions our

√
p proposed rational value

holds in our subgoal statement previously viewed in the Output pane 13. It

24From proof 2.1 our assumption that
√
p ∈ Q allows us to claim

√
p = m/n with gcd(m,n) =

1.
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Figure 14. solves suggests a rule.

is also reassuring that the name of the suggested rule appears to describe
what we are trying to establish, i.e., that a rational number can be repre-
sented by the ratio of two natural numbers, i.e., we are not blindly accepting
inscrutable code, but rather output intended to allow a human to follow and
approve the progress. Let us try using the previous method of applying a
suggested rule, i.e., type by (rule Rats abs nat div natE) at the end of our
current line in the edit area.25

Clicking on the Output tab at bottom of jEdit screen, we see in the
screen shot 15 that our new facts have been accepted (predicated on the
assumption that

√
p ∈ Q). If you do not obtain the indentation shown,

use the Tab key on your keyboard to indent the relevant lines (we had to
do that ourselves, probably because of the length of the last inputs and
breaking over several lines).26.

If you click on the Query tab at the bottom of the jEdit window and
select Print Context with context, terms, and theorems checked (click Apply
to refresh display in that pane if necessary), you can obtain a detailed look
at the status of the proof thus far Figure 16. In the screen shot you can see
that we clicked and dragged the bottom of the edit area pane up (so the

25If you are uncertain whether you have entered the same lines in the theory file at any point,

you can always compare your edit area content with the raw print of the entire theory file in the

Appendix A.
26The logical block structure is known by Isar from keywords and syntax (implicit nesting

of subproofs), but it is helpful to maintain a visual cue. This can also be accomplished by the use
of {. . .} segments. See the discussion of proof context §2.2.1 in the Isar Reference [24].
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Figure 15. Rule application solves subgoal.

edit area is mostly hidden) in order to display all of the lines in the Query
Print Content pane.

Figure 16. Context of the proof at line 12, Query pane.
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In that Context display you may see that the local facts, that is the
proof context within this subproof nesting, includes the assumption

√
p ∈ Q

that we made to begin this sub-block (and that the outer level term binding
?thesis is still to eventually prove ¬P (p) =

√
p ∈ Q). We find it useful to

know where jEdit provides information on the current logical context.

You may be puzzled as to why the Context labels p,m, n as real (we
were). If you type the command value p (on a new line in the edit pane),
the Output pane responds with "p" :: "nat". Repeating that command
for m and n also tell us that these terms are understood to be ∈ N. That is
reassuring. Let us look further.

Go to the Query tab at the bottom of the jEdit window, i.e., change
the lower pane view from Output to Query. Click on the Find Theorems
then type in name: Rats_abs_nat_div_natE in the Find field and click the
Apply button. Among other things, we are told that a theorem was found
containing that rule: Real.Rats_abs_nat_div_natE. That means that the
Real.thy contains the rule Rats_abs_nat_div_natE.

Where is Real.thy? It is not strictly necessary for you to participate
here, but if you feel comfortable navigating your computer and want to learn
more about tracking down rules in theories, click on Utilities along the top
of the jEdit window and look at the jEdit Home Directory. Remember the
portion that ends at src. Alternately, you could click on the File Browser
tab at the left-hand side of the jEdit window and look for the Path to
Isabelle2020 (depending on how much directory navigation you have done it
may already be pointing to HOL, which is were we want to look for Real.thy).

Now go to the top of the jEdit window and click on Search =⇒ Search
in Directory. Copy Rats_abs_nat_div_natE to the Search for pane in the
Search and Replace window that popped up. At the bottom of that new
window, type in the Filter field, Real.thy. Assure that the Directory field
points to the location of the Isabelle HOL src, on a Linux machine that
will be something like /usr/local/Isabelle2020/src/HOL/. You should
see something like the following screen shot before clicking the Find button
Figure 17.

Now hit the Find button and see Figure 18

Click on the lemma line in the HyperSearch Results (not sure that is
necessary, but cannot hurt, particularly in a case where there are multiple
results). Close both of those search windows and click on the left-hand tab
File Browser to close that folder side pane if it is open. You should now find
jEdit has opened the Real.thy and taken the view in the edit pane to the
beginning of the Rats_abs_nat_div_natE lemma Figure 19.



2.2. Implement in Isabelle 23

Figure 17. Searching for Real.thy before hit Find button.

Figure 18. Searching for Real.thy before after hit Find.

Notice that all of the lines in the edit area view of the lemma are light
red highlighted and the Output pane below the edit area is blank (click
on the Output pane tab if not currently active). Both of these visual cues
tell you that we are simply viewing this theory file rather than loading it
to execute and check. This is because it is part of the Isabelle/HOL heap
image that is loaded automatically when you start Isabelle. If we actually
wanted to execute each line we would have to tell Isabelle to load an image
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Figure 19. View the lemma in the Real.thy.

that does not already include this theory. We will not discuss this further
here because it is quite a digression and not of immediate relevance.27

Looking at Real.thy in the edit area, we see that its goal (the obtains

line) is indeed the result we sought, i.e., the fact that a quantity is in Q
permits a representation as a ratio of two natural numbers m,n, coprime and
n 6= 0. Scrolling down to examine the proof, we find it is set up with integer
numerator and natural non-zero denominator, both coerced to real to obtain
the division operation. That is established by a rule Rats_eq_int_div_nat

, rational numbers equal integers divided by natural apparently. To establish
that holds for the absolute value of the rational variable we again see the
real coercion in the division operation. What we want to chase down is
what is happening here with the use of the token real in an apparent type
coercion role in these ratio division operations involving natural and integer
numbers.

Accordingly, we will tell you how to locate the definition of the real

term in this Real.thy28 Select Search =⇒ Find on the top menu items of the
jEdit window. When the Find subwindow appears, type in quotient type

in the Search for field, assure radio button Text is selected, along with

27You can select a new logic to load on startup via the Plugins =⇒ Plugin Options =⇒
Isabelle =⇒ General. About four rows down from top of that window is a drop down menu

showing HOL. If you click on the right drop down arrow it displays a very long list of alternate
logics. Do not change this unless you have researched the subject and understand what you are

doing.
28We made a more efficient search of this theory file elsewhere so know it is a quotient type.
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Current buffer and direction Backward, and hit the Find button, then seeing
something like the following Figure 20.

Figure 20. Search Real.thy for quotient type.

You may close the Search and Replace window and inspect the edit area
now showing the quotient type declaration for real in the Real.thy. We
may be digressing excessively by this point, so we will summarize what we
find here (and in the references we will cite).

Isabelle/HOL organizes its numeric theories using axiomatic type classes,
e.g., ring and field with the usual abstract algebraic properties. The natural
number type nat is a linearly ordered semiring, type int is an ordered ring,
and type real is an ordered field (see §8.4.5 in [29]). Properties may not
hold for a particular class, e.g., no abstract properties involving subtraction
hold for type nat (since, of course, one might end up with a negative num-
ber, which would not be a natural number). Instead specific theorems are
provided addressing subtraction on the type nat. More to the point, “all
abstract properties involving division require a field.”[29]

What we are seeing here is a quotient type being used to lift a division
of natural or integer types to the abstract real type in order to satisfy the
field requirement (see §11.9 of [24]). The quotient type real is created from
the equivalence relation (definition realrel in the Real.thy file) between
the underlying vanishing differences of Cauchy sequences [30]. We conclude
that the appearance of real coercion terms in the ratios of our natural
numbers (or positive integers) in our Isabelle proof states is appropriate and
in fact required to satisfy rigor.29

29We should note, though, that a researcher in the proof automation field, Mathias Fleury,
explained that the sqrt function in this code is only defined over the real numbers, hence the

coercion by Isabelle. After that the ratio m/n was naturally coerced also. He advised that this

behavior could be avoided by not overloading operators, e.g., not using a sqrt that applied to
natural and integer numbers with coercion to real, but rather a dedicated function designed only

for the target type. For example, a group formalizing some problems from the International
Mathematical Olympiad [35] avoided using real numbers in a number theory proof by defining
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Let us again return to our work on the SqrtTutor1.thy theory. Go to
jEdit File−→ Close global (not Close All global) to close Real.thy and delete
it from the jEdit buffers, at which time our SqrtTutor1.thy will reappear
in the edit area. Then click on the left hand File Browser tab to close that
pane. Type in the edit area a new line30:

from n and sqrt_rat have "m = \<bar> sqrt p \<bar> * n "

Notice that in the Output pane below the edit pane we obtain two facts
identified by the labels n and sqrt_rat we used earlier and that our new
subgoal is stated Figure 21.

Figure 21. New proof line.

This appears to be a good time to let the simplifier simp just rewrite the
line we gave it using the two labeled facts, so finish the line with by simp.
The Output pane immediately updates our fact state to include this new
line, i.e., it is proved. The Simplifier uses rules it knows about from the back-
ground theory or local proof context (our case here), along with chained facts

a natural number only square root (we would have had to redesign our entire proof to enjoy its

benefits). We also found an Isabelle implementation of the p prime −→ √p /∈ Q proof in ZF

(Zermelo-Fraenkel Set Theory [19]) that used no real number references at all, but it is a difficult
read (because of the subject complexity, as well as the fact that it was written prior to the Isar

proof language, so the proofs are more machine scripts).
30From our proof 2.1, since

√
p = m/n, we may obtain m = |

√
p|n.
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and local assumptions (subgoal premises) to rewrite a statement, basically
by substituting terms and expressions it recognizes (see §9.3 [24]).

Type in the edit area a new line following our work above31:

then have "m^2 = (sqrt p)^2 * n^2"

The Output pane updates to Figure 22.

Figure 22. New proof line.

Let us switch to the Query pane (lower pane, click on Query tab) and
see if Isabelle might give us a suggestion from selecting the Find Theorems
tab, typing solves in the Find entry field and clicking on Apply (as we
have done earlier). solves finds nothing, but in fairness, this is somewhat
more complicated in that we want to recognize that squaring both sides of
our last result are also equal. We can bring in the big guns for this one
and try Sledgehammer.32 Click on the Sledgehammer tab next to the Query

31Folowing our proof 2.1, from m = |
√
p|n it follows that m2 = (

√
p)2n2.

32Sledgehammer heuristically selects a few hundred of relevant lemmas from the currently
loaded libraries. The default filter for that selection process is a combination of a relevance

filter and a machine learning application which combines naive Bayes with k-nearest neighbor

filtering. Sledgehammer then passes those facts along with the current theory proof goal to
available automatic theorem provers (ATPs) and satisfiability-modulo-theories (SMT) solvers. If
a proof is returned from the provers within a timeout limit, Sledgehammer tries to construct a

proof using the builtin tactics of Isabelle/HOL. These will usually be short or one-line tactics that
you can insert in your proof. You can also request Isar proofs. [32] See also §4.2 in [31] A tactic

is a function that maps a goal state, i.e., a theorem, to a sequence of potential successor states.

For example, an Elim-resolution tactic resolves the target goal with a rule, proves its first premise
by assumption and removes that assumption from any new subgoals. Forward-resolution leaves

the selected assumption in place. In general, assumption tactics close a subgoal by unifying some
of its premises against its conclusion. See §4.2.1 in The Isar Implementation [26].
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tab at the bottom of the window. In the Provers pane you should see the
default provers that Isabelle includes (and is configured to use33). We have
run Sledgehammer throughout this tutorial with the “Try methods” box
checked, so you should assure that is checked also (if you want the best
chance of obtaining similar results as we show34.35 Click on Apply to set
them loose on our current subgoal. After a brief wait while your computer
cores are exercised, you obtain a list of results by the various provers (z3
timed out, i.e., could not find a suggestion36): Figure 23.

Figure 23. Sledgehammer prover results.

To try one you only have to click on it in the window to insert it auto-
matically in the edit window at the current cursor location (the active part
of the line is dark shaded and will highlight when you hover cursor there, a
click at that point will cause the insertion).37

We click on the first choice:

33The vampire first-order resolution prover is included, as of this writing, with the Isabelle

distribution and is located in the Isabelle2020/contrib folder. That path location should already
be listed in the Isabelle2020/Isabelle/etc/components text file (as a local folder to the instal-

lation, i.e., not the entire path). We could not persuade Isabelle to use vampire until we made a

new setting in Isabelle/Jedit Options saying to use Vampire noncommercial (changed unknown
to yes) and typed in vampire on the prover list with the other provers in the Sledgehammer pane.
We omitted it in this tutorial to avoid distracting the reader.

34However, the results are not exactly determined, e.g., we obtained a slightly different

set of suggestions from Sledgehammer on another occasion, possibly due to having loaded the

entire theory file first. This should not worry you, since Isabelle explicitly replays all proof tool
results through the LCF kernel before accepting them (we discussed the ML core briefly in our

Introduction 1), i.e., a tool could fail or diverge unexpectedly, but is not allowed to return wrong
results (see Chapter 5 in [27]).

35The popup note if you hover on “Try methods” says it will try methods like blast and auto

as alternatives to the metis method if checked, however you may see metis results, presumably if
the particular prover did not succeed with the standard methods. Notice that we did not check

the “Isar proofs” box either (but we do select that farther below in order to demonstrate that

capability).
36The z3 SMT solver was developed Microsoft Research. It frequently times out without

providing a suggestion in the current context, so we usually do not include it on the provers line.
37§3.9 of the jEdit reference manual [23] describes this behavior as “proposed proof snippets

are marked-up as sendback, which means a single mouse click inserts the text into a suitable place
of the original source.”
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"cvc4": Try this: by (simp add: power_mult_distrib)

Return to the Output pane to see whether that suggestion proved the current
subgoal: Figure 24 (we see immediately that the suggestion was inserted in
the edit pane).

Figure 24. Sledgehammer suggestion proved current subgoal.

We see the subgoal has been proven (Output pane this). We will not
go through it, but you may have noticed in the Sledgehammer pane that a
multistatement Isar proof was also suggested (many or all of the suggestions
returned might work, but we continue without investigating that possibility).
This might be instructive to inspect (but we will not do that here), though
we were pleased to require only the single suggestion of cvc4.38

Let us continue with the proof. Enter the following new line in the edit
area39:

also have "(sqrt p)^2 = p"

This seems like another case where the Simplifier would easily prove the
statement, so type by simp at the end of the line (or next line; the placement
is not critical). The Output pane updates to indicate this is now the
proved statement (we will skip the screen shot, assuming you are becoming
acclimated to this environment). On the next line type:

also have "... * n^2 = p * n^2"

38cvc4 is an SMT solver, i.e., a Satisfiability Modulo Theories solver. See the Sledgehammer
documentation that accompanies the Isabelle distribution for more information about the source

of these provers. [32]
39We are working towards m2 = pn2 in our proof 2.1, but every detail must be proven.
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The “...” tells Isabelle to fill in the right-hand side of the previously proven
statement.40 If you look at the Output pane at this point, you will see the
resulting subgoal has indeed substituted p for the “...” term 25 (this merits
a screen shot and you can also check your current status in the edit pane).

Figure 25. In Output pane the ... term is replaced by the previous
result rhs.

That appears to be easily proven, so type by simp at the end of the line
(or next line; the placement is not critical). The Output pane updates to
indicate this is now the proved statement. On the next line type:

finally have eq: "m^2 = p * n^2"

Is this an easy subgoal? If we type by simp at the end of the line, the
Output pane gives us an annoyed red failure message and the by simp

command in the edit pane has also been colored to indicate displeasure.
Erase by simp and let us invoke Sledgehammer. Select the Sledgeham-
mer tab in the lower pane, erase the z341 prover in the list (retain only
cvc4 spass e) and hit Apply. All three provers quickly arrived at the sug-
gestion using of_nat_eq_iff by blast, so mouse click on one of those
lines in the Sledgehammer pane to insert that phrase into the current cursor
location in the edit pane. Return to the Output pane to see the subgoal is
proven Figure 26 .

40To be precise, the term ... refers to “the argument of the last explicitly stated result (for
infix notation this is the right-hand side).” See §1.2.1 of the Isar Reference [24].

41The z3 prover timed out on our test and also disabled our system monitor for minutes, so
we thought we would spare you the discomfort.
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Figure 26. Blast the subgoal into submission.

We note, from §9.4.4 of the Isar Reference [24], that blast is a (separate)
classical tableau42 prover that uses classical rule declarations (see §9.4.4 of
the Isar Reference [24] for more information about when to use blast).

Let us type in the next line of the proof43:

then have "p dvd m^2"

If you select the Query tab on the lower pane and then select the Print
Context tab above the pane, you can clear the checkboxes and then check
only the term box. When you do that you see the current term bindings,
i.e., the last proven fact (?this) and the current goal (?thesis) Figure 27 .

We could get away with by simp on this relatively simple subgoal, but
let us try the default refinement step, by standard, which is abbreviated
with simply “..”. Typing that “..” at the end of our current line we see
(return lower pane to Output tab) Isabelle immediately uses the fact that
m2 = p n2 to arrive at p |m2, i.e., the equivalent of dividing both sides of
the known equation by p Figure 28 .

Type the next proof line:

42A tableau is a graph-based representation of a set of sequents.[20] Sequent calculus is
a generalization of natural deduction that is easier to automate. A sequent has the form Γ `
∆, where Γ and ∆ are sets of formulae. If P1, . . . , Pm represent assumptions and Q1, . . . , Qn

represent alternate goals, then the sequent P1, . . . , Pm ` Q1, . . . , Qn is valid if P1 ∧ . . . ∧ Pm

implies Q1 ∨ . . . ∨Qn (see §9.4.1 in [24].
43From our proof 2.1, since m2 = pn2, we may say that p|m2 and also that p|m, since a

prime divisor of a product of integers must divide one of the integer factors, which are identical
in the case of a square.
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Figure 27. Relatively simple fact to current goal suggests standard method.

Figure 28. Default refinement step with by standard.

with "prime p" have dvd_m: "p dvd m"
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We assume you recall that you may use the jEdit suggested open-close angle
brackets instead of quotes. As we mentioned earlier, we show only quotes in
this document, not having the exact font for the angle brackets. Looking at
the Output pane after typing this line Figure 29, we see we require a fairly
smart proof, i.e., a rule that knows that if a prime divides the power of a
number, then it also divides the base number44.

Figure 29. Want rule to prove prime divides base number of power.

A quick check of by simp does not prove our subgoal. Let us see what
Sledgehammer might recommend. Select the lower pane tab for Sledge-
hammer and “loose the hounds”45 with the Apply button. Very quickly
Sledgehammer provides proof suggestions: Figure 30 .

We prefer the second suggestion (but all three should work), so click on
the cvc4 suggestion to use

using prime_dvd_power_nat by blast

Returning to the Output pane we see p |m (p dvd m) has been proven. We
enter the next line of the proof into the edit pane46:

then obtain k where "m = p * k"

44This could derive from the prime divisor property, i.e., a prime is something with the
property that if it divides the product of two things, then it must divide one or the other (or
both), paraphrasing Kimball Martin’s definition 2.2.2 in [34].

45We kept z3 off the list of provers for now, not wanting another timeout with odd incidental

effects.
46From our proof 2.1, because p|m there must be an integer k such that m = pk.
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Figure 30. Sledgehammer results.

The resulting display of the new goal in the Output pane Figure 31 is
interesting in that it shows some of the underlying logic framework, i.e.,
using universal quantification (a binder) to introduce a proof depending on
a new term k. If there is such a k where m = p k, then we will add that fact
to our local set of facts on the way to our goal.

Figure 31. Quantifying a new term.

Let us make a quick try with the standard proof, i.e., type “..” at the
end of this new line. That establishes the new fact m = p k. Enter our next
line of proof in the edit pane47:

47From our proof 2.1, we already established that m2 = pn2. If we square m = pk to obtain
m2 = p2k2, we can derive pn2 = p2k2.
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with eq have "p * n^2 = p^2 * k^2"

A look at the Output pane tells us that Isabelle is considering recent facts
m2 = p n2 (because we referred to it with the label eq in the line we typed)
and m = p k (that being the most recent result). However, that does not
make the connection we require obvious, i.e., that if we square that previous
result m = p k −→ m2 = p2 k2 we could equate both expressions for m2.
We will bring in the Sledgehammer again. Click on the Sledgehammer tab
below the lower pane and hit Apply.

The Sledgehammer results on this occasion require more time than usual
and two of the provers, e and spass, returned metis48 method suggested
solutions, with fairly complex parameters Figure 32.

Figure 32. Some Sledgehammer suggestions including metis method.

This might be a good time to request Isar proofs on a Sledgehammer run
in order to demonstrate clearly what that kind of result looks like. In the
Sledgehammer pane, put a check in the “Isar proofs” checkbox to the right of
the Provers list field. Then click on Apply again. Now we see both one-liners
(proof suggestions using the by command and a method) and actual Isar
proofs returned by the two ATPs spass and e Figure 33 (we clicked on the
horizontal bar between the edit pane and the lower Output/Sledgehammer
pane and dragged it up a bit so you can see the entire list of results returned;

48From the Isar Reference[24] §12.6, metis is a model resolution theorem prover. From [32]
we find ATPs or automatic theorem provers include spass and e, of the provers in our Prover

list (also vampire, which as we mentioned earlier above, requires some slight configuration to run,
though it is included with Isabelle). cvc4 is categorized as an SMT solver, as is z3. The real

utility of metis is in reconstructing (to run on the Isabelle kernel) proofs returned by provers:

When given a list of facts that Sledgehammer found external provers (spass, e, z3, vampire, etc.)
successfully used in a proof, metis re-finds the proof (if possible), reconstructing it so it can be

validated on the Isabelle inference kernel, that being the essential to the LCF philosophy (see §3.4

in [33]). Those reconstructions are what metis is showing us in Figure 32.
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you can also undock the pane, and any of the other panes, and float it
separately, produce multiple instances, etc. but this is too much for us and
probably too much for our limited computer memory).

Figure 33. Sledgehammer returning Isar proof on request.

Go ahead and click on the shaded portion of the first Isar proof, the one
directly beneath the spass one-line suggestion. As a result, that Isar proof
block is inserted into the edit pane at the current location in the theory
(return to Output pane to see result): Figure 34

Figure 34. Isar proof inserted.

The desired goal, p n2 = p2 k2, is proved (Output pane). Notice that
we inserted an entire subproof block into our theory, complete with a be-
ginning proof− command and ending qed to close the subblock and export
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its result back to the enclosing level. That − (a minus sign) following the
proof command tells Isabelle not to execute the usual single reduction step
(in which Isabelle tries to pick an appropriate rule automatically from the
current context, as in the double-dot .. step we have used earlier, see §6.4.3
of [24]). In this particular case we see that the Isar proof returned is indeed
more informative of how the subgoal was proved, i.e., by commuting to the
left p n2 and squaring m = p k, then setting the left side equal to the newly
squared right side since they both were equal to the same term, m2. We
may as well keep this proof and continue.

Type in our next proof line into the edit pane:

with p have "n^2 = p * k^2"

Let us see another Isar proof if Sledgehammer is able. Return to the Sledge-
hammer pane and, leaving the “Isar proof” box checked along with “Try
methods,” click on Apply. Well, Sledgehammer worked for a while on this
one and one of the ATPs, e, failed to construct an Isar proof. spass was
able to construct an Isar proof, something to the effect that since p was
greater than zero, we could divide both sides of p n2 = p2 k2 by p (cancel
left) and obtain n2 = p k2. Click on the shaded area of that Isar proof in
the Sledgehammer pane to insert the block into our edit pane. Return to
the Output pane to see that did prove our goal. n2 = p k2.

Type the following new proof line in the edit pane following our recent
subproof:

then have "p dvd n^2"

This appears fairly simple, just noting that we could divide both sides of
the last result by p, so let us try the double-dot standard proof by typing
“..” at the end of that line. That proves this subgoal. Let us maintain our
rapid pace49 and enter the next line of the proof:

with "prime p" have "p dvd n"

This line is identical to a previous line, with n replacing m, namely

with "prime p" have dvd_m: "p dvd m"

We proved that previous line using by (rule prime_dvd_power_nat). Let
us try that again here, typing it in at the end of the current line. That
proves the new line Figure 35

We have now proved, on the assumption that
√
p ∈ Q in our proof 2.1

above for Theorem 2.1, that:

49If you are not sure you have typed in all theory lines, see the Appendix A where we give
you the raw text lines of the entire theory file.
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Figure 35. Reuse previous similar proof one-liner.

p prime divides both m and n and therefore must divide the
greatest common divisor of m,n, i.e., p|gcd(m,n)

Let us enter that into our proof, using the current fact that p |n (see Output
pane “this”) and the previous fact p |m by referring to the label we have it
above, dvd_m:

with dvd_m have "p dvd gcd m n"

There should be a rule that applies to this use of properties of the gcd. We
can use the solves criterion in the Query pane Find Theorems as we did
earlier. Switch from the Output to the Query tab on the lower pane. Then
select the Find Theorems tab and type solves in the Find entry field and
click on Apply. Isabelle finds two theorems that are closely related to our
current goal. We prefer the first one, gcd_greatest Figure 36

Figure 36. Obtain solves suggested rule for gcd context.
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Let us copy gcd_greatest50 and construct a by (rule) application,
typing that in at the end of our current line to obtain Figure 37.

Figure 37. Apply solves suggested rule for gcd context.

That proves this new subgoal, but in our Theorem 2.1 “we stipulated
that m,n are relatively prime, i.e., that gcd(m,n) = 1.” Type in the follow-
ing line in the edit pane to bring this observation into consideration:

with "coprime m n" have "p = 1"

This appears to be a relatively simply statement, so try the Simplifier, typing
by simp at the end of that line. We then see that this p = 1 statement is
proven. If you switch the Output pane to the Query pane, go to the Print
Context tab, deselect all checkboxes then place a check in the theorems box,
that pane should update to list all the established facts (theorems). Scroll
down the long list to see the last three, i.e., Figure 38.

We have two contradictory facts, 1 < p and p = 1. We are ready to
administer the coup de grâce. Return the lower pane to the Output and
type into the edit pane

with p show False

The state is then shown to be prove using 1 < p and p = 1 with goal False.
It seems a pity that it will be so easy now (but we did work to arrive here),
but we need only type by simp. The Output pane updates to Figure 39.

The Output pane tells us the original goal to show False was success-
fully obtained when our local proof (we have been working on the assumption

50We do not need to type in the entire fully qualified name:
GCD.semiring gcd class.gcd greatest, just the portion to the right of the rightmost period.
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Figure 38. Facts now establish a contradiction.

Figure 39. We proved
√
p ∈ Q =⇒ False.

that
√
p ∈ Q in a local proof contained within the outer proof with original

goal) exported the local result
√
p ∈ Q =⇒ False (because p could not be

equal to 1 and greater than 1 simultaneously), closing that local context.
We may terminate our proof now, typing qed Figure 40.

The Output pane now shows the theorem we have established, complete
with schematic variable ?p,51 which could be instantiated by use of the
theorem elsewhere (if we named the theorem to provide a reference52). Our
proof of Theorem 2.1 with Isabelle/HOL is completed.

51See §3.3.7 in the Isar Reference [24].
52theorem and lemma are the same kind of entity, i.e., definitions requiring formal justification

by proof ( refer to §5.1 [24]). Their different names serve as formal comment. If we gave our
theorem a name, e.g., prime not q, we could invoke it.
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Figure 40. The theorem is completed.



Chapter 3

Closing Thoughts

We hope our tutorial has made using Isabelle as a proof assistant in the
development or analysis of mathematical theorems seem a desirable possi-
bility, particularly for the student1. To assure we have not given a false
sense of simplicity, we emphasize again that we were merely reproducing
a theory already constructed and provided with the Isabelle distribution
(HOL/ex/Sqrt.thy). The actual process of developing a new proof is con-
siderably more challenging. See [22] (mentioned in our Introduction 1) for
a somewhat dated tutorial for mathematicians featuring portions of new
theory development in Isabelle, guided by existing relevant theories.

As far as obtaining guidance from existing theories relevant to your area
of interest, the Isabelle distribution contains several different base logic sys-
tems in addition to the HOL (Higher-Order Logic) that we used above, e.g.,
you might do work in ZF (Zermelo-Fraenkel Set Theory) instead, or FOL
(First Order Logic). Even within HOL alone there are many branches of
mathematics implemented, e.g., there are sections including theories for Al-
gebra, Analysis, Cardinals, Complex Analysis, Number Theory, and many
more. The Isabelle distribution includes more than 700,000 lines of Is-
abelle/HOL theories[21]). If that were not enough, there is an online col-
lection of proofs developed by the Isabelle community (obtain at [2]), more
than 480 articles written by 322 authors, comprising 134,000 theorems and
supporting lemmas in the areas of both computer science and mathematics
(description from [21].

1Compared with the prototypes of the 1970s, Isabelle has already become a practical and

versatile tool used by system designers, mathematicians and others, providing a highly readable
structured proof language and interactive live proof development environment[21].
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Appendix A

The entire SqrtTutor1.thy presented in Section 2.2 is given as raw text
below. We inserted a few hard line breaks to prevent long lines running off
the page margin on the right:

theory SqrtTutor1

imports Complex_Main "HOL-Computational_Algebra.Primes"

begin

theorem

assumes \<open>prime (p::nat)\<close>

shows \<open>sqrt p \<notin> \<rat>\<close>

proof

from \<open>prime p\<close> have p: \<open>1 < p\<close>

by (rule prime_gt_1_nat)

assume \<open>sqrt p \<in> \<rat>\<close>

then obtain m n :: nat where

n: \<open>n \<noteq> 0 \<close> and

sqrt_rat: \<open>\<bar>sqrt p\<bar> = m/n\<close>

and \<open>coprime m n\<close> by (rule Rats_abs_nat_div_natE)

from n and sqrt_rat have \<open>m = \<bar> sqrt p \<bar> * n \<close>

by simp

then have "m^2 = (sqrt p)^2 * n^2"

by (simp add: power_mult_distrib)

also have \<open>(sqrt p)^2 = p\<close> by simp

also have \<open>... * n^2 = p * n^2\<close> by simp

finally have eq: \<open>m^2 = p * n^2\<close>

using of_nat_eq_iff by blast

then have \<open>p dvd m^2\<close> ..

with \<open>prime p\<close> have dvd_m: \<open>p dvd m\<close>

using prime_dvd_power_nat by blast
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then obtain k where \<open>m = p * k\<close> ..

with eq have \<open>p * n^2 = p^2 * k^2\<close>

proof -

show ?thesis

by (metis (full_types) \<open>m = p * k\<close>

\<open>m\<^sup>2 = p * n\<^sup>2\<close>

mult.commute mult.left_commute power2_eq_square)

qed

with p have \<open>n^2 = p * k^2\<close>

proof -

have "\<not> (1::nat) < 0"

by blast

then show ?thesis

by (metis (no_types) \<open>1 < p\<close>

\<open>p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2\<close>

mult.assoc nonzero_mult_div_cancel_left power2_eq_square)

qed

then have \<open>p dvd n^2\<close> ..

with \<open>prime p\<close> have \<open>p dvd n\<close>

by (rule prime_dvd_power_nat)

with dvd_m have \<open>p dvd gcd m n\<close> by (rule gcd_greatest)

with \<open>coprime m n\<close> have \<open>p = 1\<close> by simp

with p show False

by simp

qed

end
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