
Measuring dynamic input capacitance of CMOS logic gates

G. Dalton Bentley

https://stackexchange.com/users/7947131/dalton-bentley

(Dated: December 27, 2021)

Abstract

As a retired electronic engineer, my attention was attracted by a question posted online at Stack

Exchange, How find input capacitance output R CMOS use SPICE, asking how to measure the

input capacitance (and output resistance) of a CMOS NAND gate using SPICE (or descendants

of that electronic circuit simulation software). This paper is a detailed discussion of the subject

and includes Ngspice-27 code, as well as discussion of standard cell libraries, CMOS layout,

appropriate test frequencies, and analysis and repair of the CBCM (charge-based capacitance

measurement method).

1

https://electronics.stackexchange.com/questions/498872/

CONTENTS

I. Introduction 4

II. Organization of this paper 6

III. MOSFET drain-source symmetry 7

IV. Select CMOS process model 8

A. Brief view of CMOS layout 9

B. Sizing continued 11

C. Device model cards utilized 11

V. Capacitance 13

VI. CBCM, theory 14

VII. Appropriate input drive impedance 17

VIII. Test frequency and rise/fall time considerations 17

A. Nangate cell library databook 18

B. Estimate operating frequency using rise time 18

C. Estimate maximum switch rate from propagation delay 19

D. Slew rate and full power bandwidth ffp 19

E. Transit time estimate 21

F. Choose test frequency 23

IX. CBCM: Observations of CBCM original implementation 23

X. CBCM: Analyze original CBCM error 26

A. 2002 Fan et al analysis 27

B. An energy band explanation 28

C. 2002 Fan et al proposed solution 29

D. 2004 Jensen et al proposed solution 30

XI. Our solution to the CBCM charge injection error 31

2

A. Alternative fix if you prefer more manual work 33

XII. Revised CBCM results 35

A. Test calibration capacitor 35

B. 1 GHz test NAND2 X1 loaded 59 fF 35

C. Run with 1 fF NAND2 X1 load 36

D. Run with 100 MHz NAND2 X1 test frequency 37

E. Run with 2 GHz NAND2 X1 test frequency 37

XIII. Manual method 38

XIV. Propagation delay 40

XV. Output resistance of NAND2 X1 41

A. Method using exponential characterization 41

B. Method using integration of VDS(t) and ID(t) 43

XVI. Conclusion 45

A. Non-linear capacitance in the MOSFET 46

1. Intrinsic core capacitance model 46

2. Model with extrinsic and intrinsic components 49

3. BSIM4 RF high-speed settings 49

4. A look under the hood 50

a. Graph BSIM4 internal capacitances 51

b. Graph BSIM4 internal charge variables 53

B. Original CBCM measure discrete cap Ngspice-27 circuit code 54

C. Revised CBCM measure discrete cap Ngspice-27 circuit code 62

D. Revised CBCM measure NAND cap Ngspice-27 circuit code 72

E. Uncorrected CBCM measure NAND cap Ngspice-27 circuit code 82

F. Manually measure input capacitance, circuit file 91

3

G. BSIM4 NMOS model card 98

H. BSIM4 PMOS model card 101

I. Some recommended texts for MOSFET/CMOS theory 104

References 113

I. INTRODUCTION

We happened upon the following question posted online at the electronics forum at Stack

Exchange1 How find input capacitance output R CMOS use SPICE:

I have a 2-input NAND gate spice netlist (generated from a Tanner Ledit layout)

where I have to find each input’s capacitance and the output resistance. I am to use

a 1nF load capacitor and a 10 Kohm for the calculations.

The OP (original posting) defined the circuit netlist as

* 1 = Vdd, 2 = Gnd. 3 = Nand_out (F), 4 = A (NAND in), 5 = B (NAND in)

M3 1 4 3 1 PMOS L=2u W=10u AD=80p PD=38u AS=110p PS=62u

* M3 DRAIN GATE SOURCE BULK (30.5 27 32.5 37)

M4 3 5 1 1 PMOS L=2u W=10u AD=110p PD=62u AS=80p PS=38u

* M4 DRAIN GATE SOURCE BULK (39.5 27 41.5 37)

M1 6 4 3 2 NMOS L=2u W=10u AD=70p PD=34u AS=55p PS=31u

* M1 DRAIN GATE SOURCE BULK (30.5 5 32.5 15)

M2 2 5 6 2 NMOS L=2u W=10u AD=70p PD=36u AS=70p PS=34u

* M2 DRAIN GATE SOURCE BULK (39.5 5 41.5 15)

We corrected the wiring for the MOSFET devices in the netlist above consistent with

normal electronics practice:

1 Building on the popularity of the initial Stack Overflow question-and-answer website for programmers,

Stack Exchange now offers sites dedicated to various fields, e.g., physics (where at least one Nobel Prize

winner contributed for a time), mathematics, and electronics, the latter the context here. Though losing

some of the most prolific participants in late 2019 after new management annoyed many, the site still

remains a source of high-quality information, subject to the same critical evaluation one should apply to

any information. 4

https://electronics.stackexchange.com/questions/498872/

Circuit nodes: 1=vdd, 2=gnd, 3=F Nand out,4=A Nand in,5=B Nand in

Order of MOSFET leads: drain, gate, source, bulk/well

electronically correct M1 6 5 2 2 NMOS cf. OP: M1 6 4 3 2 NMOS (d/s is reversed)

electronically correct M2 3 4 6 2 NMOS cf. OP: M2 2 5 6 2 NMOS (d/s is reversed)

electronically correct M3 3 4 1 1 PMOS cf. OP: M3 1 4 3 1 PMOS (d/s is reversed)

electronically correct M4 3 5 1 1 PMOS cf. OP M4 3 5 1 1 PMOS

Using the posted node numbers, but with the electrically correct connections, we created

a schematic for that layout in Fig. 1:

FIG. 1. The correct schematic for the posted NAND layout (using the OP node labels). M2 is

an enhancement-mode NMOS transistor like M1 (required ability to indicate bulk connection to

ground rather than source and symbol choices were limited).

Our goal in this paper will be to answer the question (albeit using a different CMOS

process, but more on that in Section IV), in considerably more detail than would be possible

in a formal answer post at Stack Exchange, with suitable adjustment of the load capacitance

on the NAND output (and discarding the 10 kΩ as irrelevant). We will provide technical

5

background and Ngspice-27 circuit code, among other things we used in the simulations and

methods developed. We consider many related matters of interest (to us and possibly to

you), but more on that below.

II. ORGANIZATION OF THIS PAPER

We will begin in Section III with a brief discussion of MOSFET drain-source symmetry

(because the posted circuit configuration apparently assumed that) and identify our terms

NMOS and PMOS for our purposes here.

In Section IV we will set out the reasons for our selection of CMOS process and PDK

(physical design kit) to use in the simulations. That will include a brief look at CMOS

integrated circuit layout to provide some context for our work. We specify SPICE model

cards and standard library cells used also.

We discuss the relevant equations for capacitance in Section V and follow with the details

of the CBCM[1] or charge-based capacitance measurement method in Section VI.

Our choice of drive impedance and test signal frequency is described in Section VII and

Section VIII. The latter section discusses the relevant standard cell library parameters and

several methods of estimating bandwidth and operating frequency for amplifiers generally,

as well as the MOSFET and CMOS in particular.

In Section IX we run simulations in Ngspice-27 using our implementation of the original

CBCM method, looking at the accuracy in measurement of a discrete capacitor of 1.5 fF be-

fore continuing to the measurement of NAND2 X1 input capacitance. We follow in Section X

with an analysis of why the accuracy was not as good as expected in the initial validation

run, finding that there was a known problem with the method causing a small error.

In Section XI we propose our own solution (a software fix more or less) to the prob-

lem discovered in the original implementation of CBCM. We include an alternate strategy

involving user participation rather than solely automated measurement.

We make several simulation runs with the revised CBCM method in Section XII, mea-

suring the discrete validation capacitor first (improving accuracy to better than 1%), then

following with measurements of the in1 input capacitance of the NAND2 X1 gate at 1 GHz,

100 MHz and 2 GHz achieving correspondence of 4-8% with the Nangate library suggested

input capacitance value of 1.599 fF.

6

We include a non-CBCM method of CMOS gate input capacitance measurement in Sec-

tion XIII, for those who might prefer a solution not involving multiple CMOS circuits (and

can accept the deterioration in accuracy).

Though not strictly concerned with capacitance measurement (except perhaps as a check

on the operation of the circuits used in those measurements), in Section XIV we measure

the propagation delay observed in our simulation of the NAND2 X1 gate, comparing with

the Nangate library suggested values.

We estimate the output resistance of the NAND2 X1 gate in Section XV, using two

different methods for cross-validation.

Appendices include a brief examination of the BSIM4 MOSFET capacitance model (Ap-

pendix A), with subsections looking at the intrinsic core model (presenting the Ward-Dutton

transcapacitance matrix), the BSIM4 RF (high-speed) settings we used, and for the curi-

ous, a look under the hood as it were, graphing some of the internal BSIM4 capacitance

and charge variables (which hopefully lend some reality to the abstractions of the model).

Ngspice-27 circuit code used in the simulations is given in remaining appendices. The code

is well-commented with a combination of explicit comment and literate programming, i.e.,

naming variables in such a way as to identify their purpose, so it is hoped that the reader

can quickly adapt the methods to whatever SPICE environment is available.

We also include in the appendices the BSIM4 SPICE model cards for the PMOS and

NMOS transistors we used in the Ngspice simulations. Finally, for those who would like to

read more about MOSFET and CMOS, we include a non-exhaustive list of textbooks and

lecture notes we used in Appendix I. We tried to include a url when we had one available

for all references cited also. Hopefully the reader has obtained a hypertext active pdf of

this paper, which will facilitate quick cross-referencing of ideas encountered (along with text

search within the pdf reader).

III. MOSFET DRAIN-SOURCE SYMMETRY

From[2] we find that the MOSFET (metal-oxide-semiconductor field effect transistor) is

a physically symmetric device and that in the BSIM42 (based on BSIM3) device model the

2 The BSIM3 and BSIM4 or Berkeley Short-Channel IGFET Models are industry standards for the simu-

lation of CMOS processes down to 0.15µm (BSIM3) and below (BSIM4).[3]

7

drain to source current (Ids) and the terminal charges should remain the same when the

source terminal and the drain terminal are swapped, either by virtue of properties of the

core physical model and/or by internal swapping mechanisms of the model. It is therefore

probably not an error to wire the MOSFET without particular regard to the normal drain

and source assignments as we see in the original L-edit3 extracted circuit posted and in

some of the standard cell library circuits. Nevertheless, we will restore normal electronic

schematic wiring conventions for PMOS and NMOS drain and source leads in our discussion,

simulations and schematics.

By NMOS we mean the integrated circuit MOSFET with n+-doped drain and source

regions embedded in a p-type substrate, where gate to source voltage VGS > 0 induces an

effective n-channel bridging source and drain such that current of electrons Ids can flow

if voltage between drain and source Vds is greater than zero.[4] Farther below we present

a figure depicting the NMOS device cross section in simplified form Fig. 11. The PMOS

transistor (we follow Sah and use the term “transistor” as a “generic name for solid-state

electron devices with three or more terminals”[5] 4) can loosely be considered to invert the

dopings (p+ source and drain embedded in n-type well) and voltages of the NMOS, i.e.,

source is the more positive terminal, Vgs < 0 turns on the device, current primarily holes.[6]

IV. SELECT CMOS PROCESS MODEL

If the NMOS transistors in the NAND circuit are in minimum L (channel length) config-

uration in the posted question, i.e., L=2u where u denotes µm, as they should be5 (leaving

aside questions about equalizing transition times in relation to other circuits or the like[8]),

that implies the minimum feature size is a relatively huge 2µm. That large a process has

not been used in integrated circuit design for thirty years or more. For example, the largest

gate length in a 1988 table of high speed logic devices was 1µm[5]). To put this feature size

in perspective, as of 2021 Intel is already shipping 10 nm FinFET processors, about as small

as technologies recognizable in our context here can get.[9]

Being unable to locate parameter sets (model cards) applicable to the 2µm channel

3 Simply put, Tanner EDA L-edit, now Siemens EDA L-edit, is a tool for drawing the two-dimensional

geometries (aka “pushing polygons”) destined for a semiconductor mask.
4 The Bell Lab definition required that the device also have power gain greater than unity.[5]
5 The current drive strength of a FET is inversely proportional to channel length so as a general integrated

circuit sizing rule the minimum channel length is used.[7]
8

length and hesitant to use defaults on some of the oldest MOSFET simulation models, we

decided, therefore, to use a process size for which we could obtain reliable standard cell

model parameters, circuit configurations, and SPICE model characterizations, specifically,

Beta Version released on 2/22/06 45nm BSIM4 model card for bulk CMOS: V1.0[10] and INV X1

and NAND2 X1 from NCSU FreePDK 45nm[11]. FreePDK45 is the NCSU (North Carolina

State University) kit for a generic 45 nm process.[12] . This is not cutting-edge technology

(early versions of the 45 nm kit were released c. 2002)6, but it was available. With some

effort we managed to locate files required to implement our CMOS circuits, but even this

old 45nm FreePDK is increasingly difficult to obtain without formal member organization

or academic affiliation.[14]. After some initial testing we updated our model cards to the

nominal corner (models nom) (a corner is “a characterization of the standard cell library

and technology with specific assumptions about the process, temperature, and voltage or

PVT”[15]), i.e., HSPICE cards for NMOS VTL and PMOS VTL built for FreePDK 45nm

verion 1.4 (2011-04-07) Subversion Repository revision 173 .[16]

The NMOS channel length in a FreePDK45 45 nm NAND2 X1 is L=0.05u, i.e., it is roughly

the minimum for the 45 nm process. “NAND2 X1” is terminology in standard CMOS cell

libraries meaning “a 2-input NAND gate, NAND2, with drive strength 1 transistor sizing

X1.”

A. Brief view of CMOS layout

Though our work in this document is oriented towards SPICE simulation of a CMOS

gate input capacitance and we will not be considering layout in detail, perhaps it would be

helpful to the reader in the context of discussion of gate width W and length L to see a

screen shot of a standard cell library NAND2 X1 CMOS circuit we opened in a layout editor

(LayoutEditor[17]) Fig. 2:

Recall from Section I above that the original question about measuring input capacitance

that sparked our interest in the subject was in reference to a circuit encountered in a CMOS

layout session with the layout editor, L-edit. Most layout editors will generate a schematic

6 There is a more advanced 15nm library based on the FreePDK15 process design kit from NC State

University used in conjunction with the Predictive Technology Model from Arizona State University[13],

but you must be a member of the Silicon Integration Initiative, Inc. or associated with a university to

gain access.[14]

9

from a layout and facilitate simulation with several SPICE implementations. However, we

hand-coded Ngspice “cards” (the lines of SPICE code in a circuit file, e.g., Appendix B

7) and ran Ngspice circuit simulations from a Linux terminal session not associated with

a layout editor. We used the open source schematic editor gschem[20] to manually draw

electronic schematics Fig. 1 and Fig. 5.

FIG. 2. A standard library CMOS NAND2 X1 circuit is open in LayoutEditor[17]. The additional

markings and smaller inset figure[21] were added by the author.

To make a more direct connection of the above layout Fig. 2 with the NAND2 X1 electronic

schematic, we offer Fig. 3.

Finally, one more figure presents detail of a MOSFET transistor (NMOS), comparing

cross section in silicon to a view of the corresponding typical view in a layout editor: Fig. 4

For those who would like to read more about MOSFETs and CMOS and/or the layout

of CMOS integrated circuits, see Appendix I.

7 In 1973 when SPICE1 emerged, much of computer input was provided via punch (Hollerith) cards. SPICE

element instance and control line lines were batch submitted with decks of these cards.[18]][19]

10

FIG. 3. A NAND2 X1 is shown in schematic at left (a) (compare our earlier schematic Fig. 1)

and at right (b) in superior view of the corresponding (simplified) CMOS horizontal transistor

layout.[21] The width W, i.e., poly gate and connecting strip, runs vertically as in Fig. 2.

B. Sizing continued

The NAND2 X2 would therefore have increased current drive (more transistors while

arranged to keep the resistance about the same), but higher input capacitance, the inputs

now seeing more parallel gates. Recall that, as a general matter, resistance is inversely

proportional to the cross-sectional area, A = Height ·Width, of a rectangular conducting

region, Resistance = Length/(σA), with σ being the conductivity of the material (in turn a

function of charge density ρ and carrier mobility µ).[22] Capacitance is directly proportional

to the area of the planes separated by dielectric[22]. The electrical effort required of logic

gates to drive other gates is then usually expressed a ratio of transistor widths, where it

is assumed that they have the same minimum length[23], although in our specific case we

see parallel devices used to accomplish effective increase of width and decrease of effective

length. The sizes of the transistors in standard cells may be optimized in application for

delay minimization and fall/rise time matching, among other performance goals.[8]

C. Device model cards utilized

We used the VTL 45nm BSIM4 model card for bulk CMOS because our standard library

cells used NMOS VTL and PMOS VTL. “VTL” identifies SPICE model characterization for

low threshold voltage (Vt), high-performance devices in this PDK.[12]

Our copy of the documents[11] for this CMOS design kit included the stdcells-databook.pdf

11

FIG. 4. Shown is an NMOS (n-type MOSFET) in silicon cross section at the top and in superior

layout view below. From a pdf file “EECS 6.012 Spring 1998 Lecture 13” at the Electrical Engi-

neering and Computer Sciences department of the University of California, Berkeley. Compare to

any of the four transistors in Fig. 2, being mindful of the difference between NMOS and PMOS

drain and source diffusions (and PMOS n+ well vs the p+ bulk of the NMOS).

automatically generated when Nangate built this library, NangateOpenCellLibrary. Nangate

sells tools (e.g., Library Creator) to automatically generate standard cell libraries, but as

a demonstration of their product, made freely available this particular library generated

from the academic-purposed FreePDK45 Physical Design Kit produced by NCSU[24] we

mentioned above.

In the hope of making it possible to reproduce our work, we provide a copy of the

NMOS VTL and PMOS VTL model cards in Appendix G and Appendix H, respectively.

These model cards may also be downloaded from our GitHub account at Author GitHub

Repository.

The technique we will use in the analysis of capacitance seen by a driver circuit at the

12

https://github.com/AncientZygote/cmosinputcapacitance
https://github.com/AncientZygote/cmosinputcapacitance

input to the CMOS NAND gate should be applicable to any process devices, so if you

have model cards for very old process devices, you should be able to use the method we

present, mutatis mutandis, i.e., adjusting the power supply voltage, signal rise/fall times

and frequency, etc. as appropriate for the process size.

V. CAPACITANCE

Our measurement of CMOS logic gate input capacitance seen by a driving circuit will

utilize observed dynamic current and voltage relations. A good point of departure is the

discussion of capacitance by Steve C. Cripps in his textbook on radio frequency amplifiers for

wireless communications[25]. We modify the electrostatics definition of capacitance, electric

charge Q in Coulombs, V in volts, C in Farads:

C =
Q

V
(1)

to a differential form wrt (with respect to) voltage,

C =
dQ

dV
(2)

The instantaneous current, i.e., the rate of change of electric charge, in any capacitor, i(t),

is given by

i(t) =
∂q(t)

∂t
(3)

Because q = Cv (from Eq. 1), it would therefore seem reasonable to substitute Cv for q in

Eq. 3 and write:

i(t) =
∂

∂t
(Cv) (4)

If C is defined to be the differential form from Eq. 2, then C can be written as a function

of the partial variation of charge wrt voltage:

C(v) =
∂q(v)

∂v
(5)

And we may obtain

i(t) =
∂q

∂t
=

∂q

∂v︸︷︷︸
C(v)

∂v

∂t︸︷︷︸
dv/dt

= C(v)
∂v

∂t
(6)

13

So we could write, for example,

C(v) = i
/(dv

dt

)
(7)

and go about observing the quantities on the rhs (right-hand-side) of Eq. 7 to obtain the lhs

(left-hand-side), i.e., the effective input capacitance as a function of the ratio of the current

to the rate of change of the applied voltage wrt time.8 See also Hayt’s[22] use of Eq. 5

incidental to illustrating the use of Poisson’s equation in characterizing the P-N junction

(having obtained the potential across the junction, it appeared the solution could be used

to find the junction capacitance).

VI. CBCM, THEORY

CBCM (Charge-Based Capacitance Measurement) is a method for measuring the ultra-

small capacitances encountered in submicrometer interconnects in CMOS technology.[1] The

authors of this article910 realized that for a known voltage, we need only be able to mea-

sure charge Q to determine any capacitance of interest, relying on the equation of a linear

capacitor Q = CV (see Eq. 1).

By focusing on the difference in average current, I∆ = Iref − Itest, drawn from separate

power supplies Vdd by two identical CMOS process inverters (as would be measured by a DC

ammeter interposed between the circuit and each Vdd supply) over a given time interval ∆t

where the test circuit drives the unknown capacitance Ctest, the amount of charge Q(C test)

is directly measured:

I∆ = Iref − Itest (these are average Vdd currents measured)

Q(C test) = I∆∆t (by Eq. 3)

Q(C test) = CtestVdd (by Eq. 1)

I∆∆t = CtestVdd (by transitive property of equality)

Ctest =
I∆ ∆t

Vdd
(∆t is the period of the applied pulse train.) (8)

8 If you decide to use ∆v and i(RMS) or i(avg), be sure to multiply the current by ∆t of the interval used.
9 One of the authors, Chenming Hu, was instrumental in the development of the BSIM3v3 and BSIM4v4.8.0

MOSFET SPICE models for circuit simulation and CMOS technology development.
10 The authors apparently first published a description of CBCM in 1996, in collaboration with J. C. Chen

and B. McGaughy.[26] 14

The schematic for the above scenario is Fig. 5. Notice that the NMOS transistors in the

two inverters receive a delayed, slightly smaller pulse width (but at the same frequency)

than the PMOS devices in order to eliminate CMOS transition current spikes[27] while the

PUN (pullup network) and PDN (pulldown network) are normally briefly both on during a

transition.

FIG. 5. The schematic for the two inverter CBCM (Charge-Based Capacitance Measurement)

method is shown. See text for discussion.

When the PMOS transistors turn on (when the PMOS input signal inPMOS at logic

HIGH Vdd returns to logic LOW gnd, where NMOS were already turned off with their input

signal inNMOS already grounded, see pulse diagram on Fig. 5), they begin to charge intrinsic

circuit (both test and reference) and load capacitances (for the test circuit alone) to Vdd.

Given enough time, the PMOS transistors will have completely charged all capacitances and

their current will return to zero before the next input transition. After the PMOS have

turned off following their input signal going HIGH Vdd again, the NMOS transistors are

15

turned on when their input pulse goes HIGH, providing a discharge path to ground for the

output capacitances seen by the inverters.

As we alluded to above, the objective of this drive configuration is to assure that all

current being drawn and measured from each power supply is being used by the PMOS

devices to charge load capacitance (intrinsic for the reference inverter and intrinsic plus

load for the test inverter), excluding the usual CMOS ∼ 10% of total current switching

transient short-circuit current11 (which flows from Vdd to ground down through the open

PMOS NMOS series path).

The shape of the PMOS device current waveform is not significant in this measurement

technique. Only the total current delivered is of interest and its value can be determined

with any dc ammeter, or in our case, averaging the SPICE (Ngspice-27 to be precise) current

probe (the array of values generated by a simulation run, also known as the current vector

in SPICE terminology, where “vector” here means a sequence of data accessible by one or

more indices) on each circuit Vdd path.

We should note that the authors of the CBCM method measured the same target ca-

pacitance (on-chip interconnect capacitances) repeatedly while varying the frequency. They

then plot the net current difference between loaded and unloaded inverters vs frequency

(which they assume will be a straight line). The slope of that plot is equal to the product

of the target capacitance and the supply voltage. The capacitance can then be extracted

from that product. Alternately, the frequency could be kept constant and the supply voltage

varied.[1] We did not consider this procedure to be necessary in our context, as we will spec-

ify a proper test frequency to apply to normal operation of the selected CMOS process and

standard library (in Section VIII) and we do not expect the input capacitance of a CMOS

gate to necessarily be a linear function of supply voltage or frequency (though we do find

very little variation between 100 MHz and 1 GHz in Section XII).

You may measure a discrete capacitor on the output of the test inverter X2 in the circuit

shown in Fig. 5) to verify proper performance of the circuit for example. To measure the

input capacitance of a CMOS gate, replace C test with a wire (connection) to the input

of the circuit of interest. In our own context, that will eventually be the A1 input of the

NAND2 X1, in1, referring to Fig. 1. If the NAND2 X1 circuit (or other CMOS circuit of

11 “...when switching [CMOS] from one state to another, the input crosses the threshold region, causing

the N-channel and the P-channel to turn on simultaneously, generating a current path between VCC and

GND.”[27]
16

interest) is added to the circuit netlist file for simulation, a third power supply independent

of the two used for the inverter circuits should be added.

VII. APPROPRIATE INPUT DRIVE IMPEDANCE

Many semiconductor vendors specify timing information based on a test setup using a

50 Ω output impedance pulse generator[28], the intent being to provide information using

standard test equipment impedance, which should be low to approximate the voltage source

character of a CMOS output12. In the context of our Ngspice simulations, we are driving

the CBCM inverter stages constituting the measurement apparatus (reference inverter x1

and test inverter x2) with an ideal voltage source pulse generator (two actually, recalling the

two phases driving PMOS and NMOS separately in CBCM, see Section VI).

However, the target capacitance to be measured is the capacitance on the output of the

test inverter (x2) gate. Initially, this will be a discrete validation capacitor. When the

method is established as valid, the discrete capacitor will be replaced with the input to the

NAND2 X1. The MOSFETs in CMOS gates are voltage-controlled switches (see §3.6 [6], or

§11.5.1 [4] for example) so it would be inappropriate to drive them with a current source if

the intent is to measure gate input capacitance seen by another CMOS driving circuit.

VIII. TEST FREQUENCY AND RISE/FALL TIME CONSIDERATIONS

Recall from Section IV above that we are using a 45 nm CMOS process, i.e., the nominal

corner NMOS VTL and PMOS VTL SPICE model cards (characterization under PTM[13])

from a 2011 build of FreePDK 45nm[16], and the INV X1 and NAND2 X1 standard cells from

NCSU FreePDK 45nm[11]. We define our goal to be measuring the input capacitance of a

CMOS logic gate (NAND2 X1 specifically) seen by a driving circuit (INV X1 in our context)

using a reasonable approximation to the conditions normally seen in applications of the

selected CMOS process.

As an initial hint for a suitable test frequency we find August 2008 Intel archive documents

listing clock speeds in the range 1.2− 2.4 GHz for 45nm process microprocessors for Mobile

12 A CMOS driver impedance is often approximated as 1 kΩ, which is almost exactly the Rds of the PMOS

transistor in a LOW to HIGH transition of our NAND2 X1 gate estimated in Section XV.

17

PCs. That being said, Intel appears to have been using high-k metal gate silicon technology

in 2008.[29] We are using a bulk CMOS model card, i.e., a traditional CMOS process without

the high-k metal gate adjustments, so the Intel historical data is not exactly applicable.

A. Nangate cell library databook

A more relevant source in this regard is the Nangate stdcells-databook.pdf automatically

generated when Nangate built the standard cell library we are using, NangateOpenCellLi-

brary.13 The stdcells-databook.pdf provides expected values for a number of circuit parame-

ters for each type of logic gate in the library. In our context, we are interested in INV X1 and

NAND2 X1. The library data includes values for several corners. Recall that a corner is “a

characterization of the standard cell library and technology with specific assumptions about

the process, temperature, and voltage (PVT).”[15] We consulted the values for the typical

build, Vdd = 1.10 V, Tj = 25.0◦ C (other corners include fast, slow, low temperature). The

input capacitance given for the NAND2 X1 gate was ∼ 1.59 fF, hence our choice of 1.5 fF

(testcapacitance=1.5ff) as an initial run capacitance target in Section IX farther below.

B. Estimate operating frequency using rise time

We may make use of the familiar relation between rise time tr and signal −3 dB cutoff

frequency, f−3 dB = 0.35/tr[1]. One of the Nangate stdcells-databook.pdf applicable (i.e., for

our typical corner circuit NAND2 X1 loaded with CL = 59.3567 fF) test input transition

signal rise/fall times is 0.1985 ns (we note that they also give expected results at 1.2 ps).

tr = 0.1985 ns is then roughly equivalent to a clock speed of 1.8 GHz:

f−3 dB (signal bandwidth) = 0.35/trise

= 0.35/0.1985 ns

= 1.8 GHz (9)

13 The stdcells-databook.pdf was built Feb 17 15:07 2011. The circuit description for the two CMOS logic cells

we used, which we preferred as omitting the many lines of integrated circuit parasitics in file stdcells-lpe.spi,

was stdcells.cdl, from a 2010 December build with NGLibraryCreator. Christopher Torng assembled these

files for an ASIC/FPGA flow generator.[11]

18

C. Estimate maximum switch rate from propagation delay

A maximum possible (if not recommended14) switching frequency estimate could be had

by considering the minimum pulse width to be the sum of propagation delays for output

rising and output falling transitions, fmax = 1/(tpLH + tpHL)[6]. Our Nangate stdcells-

databook.pdf suggests, for the above NAND2 X1 conditions (and considering specifically

NAND2 X1 input A1 to output ZN) a tpLH = 0.25 ns and tpHL = 0.21 ns . We obtain a

maximum switch rate of 2.2 GHz:

fmax = 1/ (tpLH + tpHL)

= 1/ (0.25 ns + 0.21 ns)

= 2.2 GHz (10)

D. Slew rate and full power bandwidth ffp

For NAND2 X1 input A1 to output ZN into 59 fF load with input transition 0.1985 ns,

our Nangate stdcells-databook.pdf specifies output transition of 0.13 ns (falling) and 0.15 ns

(rising). They define this transition as 30% to 70% of final voltage output rising and 70%

to 30% falling. If we adapt a concept from analog design, i.e., the slew rate (SR), we can

use the output transition data to obtain still another estimate of proper operating frequency

for our purposes. We note that Texas Instruments also uses the term SR for “the average

rate of change (i.e., V/ns) for a waveform that is changing from one defined logic level to

another defined logic level.”[28]

The slew rate (SR), the maximum rate of change of output voltage of a circuit with

respect to time, SR = dVout/dt is usually measured between 10% and 90% of the final value

of the output, though 20% to 80% is also used.[31] We will use 30% to 70%, that interval

delimiting the relevant Nangate data for our CMOS NAND2 X1 circuit. We do note that we

are using the transistors as saturated switches (large-signal), not as small-signal amplifiers

so we must keep this in mind when applying analog approximations.

14 Texas Instruments warns that the maximum signaling rate is not necessarily equal to the inverse of the

propagation delay. The maximum data rate on buffers depends on propagation delay matching, input

sensitivity, and output edge rates.[30]

19

With our maximum ouptut voltage Vdd = 1.1 V (disregarding overshoot), 30% = 0.33 V

and 70% = 0.77 V. Our ∆Vout (which will serve in the following derivation as Vp, the usual

peak amplitude found in the expression for sinusoidal output) is then 0.77− 0.33 = 0.44 V.

We will let ∆t 15 be the average of the Nangate falling and rising output transitions above,

or 0.14 ns.

With slew rate terms in hand, we may calculate the full power bandwidth, ffp. In the

analog world, ffp is the highest frequency for which an undistorted sinusoidal output is

obtainable at the maximum output voltage16. The maximum usable frequency output (i.e.,

above which slew rate limiting occurs) is directly proportional to the slew rate and inversely

proportional to the output signal amplitude.[31] Accordingly, we relate the slew rate and

full power bandwidth as follows in Eq. 11:

vout(t) = Vp sin 2πft (2πf = ω)

dvout(t)

dt
= 2πfVp cos 2πft

dvout(t)

dt
|max

def
= SR = 2πfVp max

dvout(t)

dt
of sine wave is at origin, where cosωt = 1

ffp
def
=

SR

2πVp
full power bandwidth defined

(11)

Using this result, Eq. 11, and our effective slew rate of SR = dv/dt = 0.44 V/0.14 ns, we

obtain ffp = 1.137 GHz:

∆Vout
∆t

(effective SR) =
0.44 V

0.14 ns
= 3.143 V/ns

ffp =
SR

2π∆V
=

3.143 V/ns

(2π) 0.44 V
=

3.143 × 109 V s−1

2.76460 V
= 1.137 GHz

(12)

This estimate is consistent with the fact that the −3 dB bandwidth (of an op amp) will

usually be greater than the full power bandwidth because the output voltage swing is less.[31]

Our −3 dB bandwidth estimate in Section VIII B above was 1.8 GHz, a little larger than the

ffp = 1.137 GHz.

15 Pardon our playing fast and loose with the notion of infinitesimal dx and that of the finite difference

∆x. Mathematically crude connections nevertheless often lead to an accurate description of phenomena,

paraphrasing Wigner’s amusing characterization of the irresponsibility of physicists in this regard.[32]
16 This characterization is from Bob Zulinski’s fine online text (pdf) Introduction to Electronics (an intro-

duction to the subject with emphasis on amplifier analysis and design)[33].

20

E. Transit time estimate

There is a figure of merit often used to evaluate the frequency response of MOSFET

transitors, i.e., fT , the short-circuit current-gain cut-off frequency.[34]

Consider Figure 6:

FIG. 6. To measure fT , the MOSFET is saturation biased with output shorted from the small-

signal viewpoint. vgs(t) is a small AC signal applied on top of the DC bias VGS [34]

With the transistor in saturation, fT is defined as the frequency at which the small-signal

current gain, h21, goes to unity:[34]

|h21(fT)| = id
ig vds=0

= 1

(13)

Though it is an interesting exercise, we will not discuss the two-port equivalent circuit for

Figure 6 and its analysis using h-parameters. For our purposes, we simply wanted to make

clear what we intended by fT . What is of interest is that the analysis produces an equation

using MOSFET semiconductor parameters Eq. 14:

fT =
1

2π

3

2

µe (VGS − VT)

L2

(14)

The inverse of fT is then the delay time[34], τd: Eq. 15:

τd =
1

2πfT
=

2

3µe

L2

VGS − VT
(15)

21

We may consider the physical meaning of τd to be the average time for an electron to cross

the channel from source to drain in a MOSFET, i.e., the transit time τt. That is, if electrons

travel distance dy drifting at velocity ve then dt = dy/ve and the channel transit time is

τt =

∫ L

0

dy

ve(y)

(16)

Identifying the terms required to calculate transit time τd with Eq. 15, L is the channel

length. We have the electron mobility, µe in Eq. 15, applicable to our nmos BSIM4 model

card. We may consider the mobility parameter µe to characterize the velocity that the

carriers of interest (e.g., electrons, holes) acquire in response to the channel electric field

E between source and drain. The BSIM4 manual[35] low field mobility parameter U0 (the

BSIM4 parameter we select as surrogate for µe) defaults to 0.067 m2/(V · s) (nmos) and

0.025 m2/(V · s) (pmos). In the interest of brevity, we will consider the operation frequency

implications that we develop for the case of the NMOS transistor to be applicable to the

PMOS transistor in the NAND2 X1 circuit as well.

The model card for our nmos transistor (provided in Appendix G) adjusts that U0 value

to 0.045 m2/(V · s), so we will use that value in our calculations. For comparison, we find

example data[34] presenting mobility for electrons in p-doped silicon (an NMOS transistor

has p-type channel) at 3.4 × 1018 cm−3 doping level is 0.03 m2/(V · s) (or 300 cm2/(V · s)).

Our NMOS model card specifies the doping concentration parameter ndep as 3.4×1018 cm−3,

so our mobility of 0.045 m2/(V · s) passes a sanity check comparison with example data.

The threshold voltage parameter VT in Eq. 15 is specified in our nmos model card (BSIM4

parameter vth0) as 0.322 V. The BSIM4 default for the NMOS device is 0.7 V, so we see

that we are using a low-threshold model, as we discussed above in Section IV C. The channel

length L is specified in our FreePDK45 45 nm NAND2 X1 standard cell circuit as L=0.05u,

i.e., L = 50 nm (discussed earlier in Section IV).

We select a VGS value of 0.37 V, i.e., 0.05 V above the threshold voltage of 0.322 V. We

wanted to turn on the transistor by exceeding threshold, but keep the VDS ≈ (VGS − VT)

close to zero, i.e., operating in weak inversion. If you increase VGS farther above threshold,

so-called overdrive, fT (device speed) increases.[36] We wanted a baseline estimate here, so

kept drive low.

22

Plugging the parameter values into Eq. 15 we calculate the transit time:

τd =
2

3(0.045 m2/(V · s)
(50 nm)2

(0.37 V − 0.322 V)

=
(2)(V · s)

(0.1350)(m2)

(50 × 10−9 m)
2

0.050(V)

= 0.741 ps

(17)

We then have fT = 1/(2πτd) = 1/(2 · π · 0.741 ps) = 214 GHz. That appears unrealistically

high, until you remember that this is the unity gain figure. Any realistic application would

want gain of 100 or more, which would give an operating frequency of 214.8 GHz/100 =

2.15 GHz

F. Choose test frequency

The various estimates above suggest that we may use a conservative test frequency of

1 GHz for the specified parameters of our MOSFETs.

IX. CBCM: OBSERVATIONS OF CBCM ORIGINAL IMPLEMENTATION

The following Ngspice simulation traces (using Ngspice code in Appendix B) are from

the unloaded reference inverter X1 Fig. 7):

Note that the PMOS and NMOS gates of the two inverters are turned on and off, gold

inpmos and green innmos traces in Fig. 7), at different times as discussed in Section VI above.

To measure the test capacitance, we are only interested in the load-charging event when the

output of the inverters is driven HIGH (to Vdd). In Fig. 7 that occurs when inpmos falls

past the threshold to turn on PMOS, pulling output to Vdd, e.g., just before t = 0.7 ns. We

see the NMOS current, blue vss1#branch, and PMOS current, red vdd1#branch, of reference

inverter X1 are independent currents without the usual CMOS switching transient where Vdd

to ground current would normally register simultaneously. Remember that Ngspice assigns

a negative sign to the positive conventional current flow from an independent voltage source,

so the red vdd1#branch negative current spike in excess of −50µA (the two currents in the

lowest axis of the figure units are µA; the voltage waves above have been scaled to fit on the

23

FIG. 7. Shown is a plot from a Ngspice simulation of the CBCM inverter apparatus (refer to

schematic Fig. 5) at 1 GHz. The currents in the 1.5 fF loaded test inverter X2 and its output voltage

wave are not included here. For measurement of capacitance, we are interested in the transition of

inverter output (out1 light violet topmost trace) to HIGH, e.g., following inpmos (gold) beginning

to drop, turning on the PMOS transistor. That results in a Vdd lead charging current spike as the

PMOS transistor charges its intrinsic capacitance and any external load capacitance. The negative

going pulse (vdd1#branch, red) between t = 0.65 ns and t = 0.7 ns is actually positive conventional

current sourced from Vdd down through the PMOS transistor in Ngspice. Note that the figure is

high resolution, so may be zoomed in your pdf reader to make labels more legible.

figure) when inpmos grounds, is positive charging current from the power supply through

the PMOS pullup of the unloaded inverter X1.

The output voltage wave and power supply currents are almost identical for the 1.5 fF

loaded test inverter X2, other than the noticeably larger capacitive charging pulse in excess

of −100µA when inpmos falls Fig. 8

The Ngspice circuit file code (see Appendix B) measures 1.537202 fF for the load capac-

itance of 1.5 fF:

24

FIG. 8. Ngspice simulation run of CBCM (refer to schematic Fig. 5) at 1 GHz. NMOS discharges

loaded X2 inverter capacitance with ∼ 150µA positive excursion pulse at ∼ t = 0.16 ns (blue

trace vss2#branch). PMOS charges intrinsic and load capacitance between ∼ t = 0.65 ns and

∼ t = 0.75 ns (negative excursion red, vdd2#branch between ∼ −100µA and ∼ −150µA) as

discussed in text. Note that the figure is high resolution, so may be zoomed in your pdf reader to

make labels more legible.

No. of Data Rows : 100125

capmeasured = 1.537202e-15

Actual test capacitance on 2nd inverter was

1.5 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

Vdd supply voltage was

1.1 volts DC

Why are we +2.48% high on the measurement of a discrete capacitor load? The astute

reader will have noticed the small red vdd2#branch positive trace in Fig. 8 occurring as

25

PMOS begins turn-off at t = 0 ns. If our capacitive load charging current from Vdd via the

PMOS pullup transistor of each inverter is shown as negative by Ngspice, then why are we

seeing any positive PMOS excursions in the figure? We see it also in the unloaded X1 traces

of Fig. 7. Because CBCM considers only the difference between the average Vdd currents

of the reference and test loaded inverters, this should not be a problem unless they are not

equal currents.17

X. CBCM: ANALYZE ORIGINAL CBCM ERROR

Let us examine more closely the odd opposite polarity vdd1#branch and vdd2#branch

currents at PMOS turn-off.

With a 1.5 fF capacitive load on the test inverter X2 (refer to schematic Fig. 5) we observe

the following return of current to the power supply (as we noted earlier, our SPICE simulator

Ngspice-27 assigns current vectors from an independent voltage source a negative sign, so a

positive trace indicates return to the supply rather than sourcing) in Fig. 9:

We obtained Fig. 9 by entering the following Ngspice command in the terminal window

that remained open following the run of Ngspice code in Appendix B:

ngspice 1 -> plot vdd1#branch vdd2#branch inpmos*1e-5 xl 1n 1.2n yl 0 15e-6

Because we were relying on the difference in CMOS capacitive charging current between

the reference inverter (unloaded) and the test inverter (loaded) to permit us to calculate the

capacitance of the load, Fig. 9 is a problem. Not only is the mohawk current not directly

associated with the PMOS load charging, but the loaded circuit returns less current here.

We assumed any difference between otherwise identical circuit current should be increased

load capacitor charging current.

When the average is taken of reference and test circuit PMOS Vdd currents, the test circuit

average is reduced less (the average function uses signed arithmetic) than the reference

average (or you could say the reference average was reduced more than the test circuit).

Either way you view the result, the difference between the two current averages (refer to

Eq. 8 discussion earlier) appears greater than it should if only actual load capacitor charging

current was considered. This causes a slight increase in the value of target load capacitance

calculated.

17 However, they are not equal and this is a problem as we soon discover in Section X.

26

FIG. 9. In the Ngspice trace we observe what we dubbed the mohawk current returned through

each inverter source lead to Vdd upon PMOS turn-off (we thought the red and blue Vdd current

traces resembled a profile view of a Native American haircut of the Mohawk tribe of the Five

Nations in pre-colonial North America). The gold inpmos ramp is the scaled gate voltage drive

signal at test frequency 1 GHz, rise time of tr = 0.1 ns . This mohawk current is referred to in the

literature (less colorfully perhaps) as “parasitic charge injection” or “charge-dumping from overlap

capacitances”.[37]. The blue trace from the loaded inverter X2 is not identical to the unloaded

reference inverter red trace X1 and this is a problem for CBCM. Units of current are µA.

A. 2002 Fan et al analysis

We mentioned the 2004 patent application by Jensen et al [37] in the caption for Fig. 9,

but there was an earlier patent application directly concerned with the impact of the mohawk

current on CBCM. For example, 2002 Fan et al [38] proposed a method “to limit measurement

error due to the return of different size negative currents...so that accuracy of capacitance

measurement improves” when using the CBCM method.

27

Fan et al [38] explains the problem in the following manner (we refer to our schematic

and labels for clarity). The equivalent capacitance looking down the gate of the two PMOS

transistors in Fig. 5 is different. In particular, the reference inverter X1 PMOS transistor sees

only the device intrinsic capacitance gate to drain (PMOS drains connect to inverter output),

while the test inverter X2 PMOS gate to drain path sees both the intrinsic capacitance and

that of the load capacitor C test. The resulting difference between negative current in X1

and X2 when PMOS gate signal returns to Vdd from ground18 “often leads to an error in the

measurement of capacitance” (C test).

We would add that the additional capacitance on the test inverter X2 drain is seen in

series with the intrinsic gate to drain capacitance, meaning that the resulting capacitance

is lower (Cseries = (1/Coverlap + 1/CL)−1). When the PMOS transistor gate voltage changes

on turn-off, the resulting discharge current of the effective gate-drain parasitic capacitance

is then smaller by Eq. 6, i.e., the negative current is directly proportional to the effective

capacitance seen.

B. An energy band explanation

A somewhat different analysis of the problem was presented in a 2000 paper[39]. The

authors viewed the matter as the transistor switch turning off faster than the channel charge

is able to redistribute, leaving residual charge in the channel at an effective energy band

greater than the source and drain. In this condition the “forces caused by the electrical field

and diffusion are not balanced and the source-channel and the drain-channel junctions can

be considered to be forward biased.” The remaining charge in the channel is then injected

into the source and drain preferentially (over the substrate). They offer the following figure

to illustrate their energy band explanation Fig. 10:

The focus of [39] was the development of an analytical model for charge injection in

MOSFET switches generally, though their specific circuit was a sample-and-hold function

with the MOSFET transistor as the switch between an amplifier buffering the input voltage

to be sampled and a capacitor to be charged to the instantaneous voltage at the sample

interval. They did present equations making use of channel charges transferred during the

18 Jensen describes this as “when the gate Voltage of the IGFET is changed suddenly from Zero volts to

a positive Voltage, positive charge is dumped at the Source and drains terminals of the IGFET by the

action of the Overlap capacitors.”[37] Negative charge is dumped for a positive to zero transition.

28

FIG. 10. Figure 3 from [39] illustrating non-equilibrium NMOS switch energy bands. Our com-

ments (the authors declining to define terms assumed to be commonly known): On the left side of

the figure we see that the Fermi level Ef (where fifty percent of the charge carriers can be found)

crosses the intrinsic Fermi level of the semiconductor Efi at the channel. The energy difference be-

tween the Fermi level Ef and the bottom of the conduction band Ec at the insulator-semiconductor

interface becomes smaller than that between the Fermi level and the top of the valence band Ev (at

0 K valence band electrons occupy the highest energy levels available). On the right of the figure

we see a depiction suggesting that residual charge in the channel is at a higher energy in relation

to the source and drain levels and so is injected into those destinations.

turnoff. Unfortunately, most of the terms were not easily obtained or in fact required some of

the unknowns which were the object of the measurement. We mentioned this work primarily

because of the interesting energy band qualitative explanation offered for the turn-off charge

injection.

C. 2002 Fan et al proposed solution

The 2002 Fan et al patent application mentioned above[38] proposed a method to correct

the negative current injection when using the CBCM method. This involved basically adding

a second PMOS transistor to each inverter of the CBCM circuit we gave in Fig. 5, in series

with the existing PMOS device of the pullup portion of the circuit. They added a third gate

drive phase also (remember we used two phases to turn the PMOS and NMOS devices on

29

and off separately).

The purpose of the Fan modifications was to assure the path to Vdd (and the monitoring

ammeters) was open when the PMOS with drain connected to the load capacitance was

turned off, i.e., the additional PMOS transistor was placed above the PMOS load PUN

transistor and turned off before the driving transistor below it. This sounded promising,

but did not improve the accuracy of our measurement when we implemented the circuit in

Ngspice. Their Table 1 comparison of standard CBCM error to that achieved with their

suggested correcting circuit was not very optimistic either (there were three rows in the

table, with the third scrambled so unusable). For example, with test capacitor of 1 fF their

fix improved the measurement error from 19.7% to 13.9%. We accordingly put that proposed

fix aside (though we did appreciate their description of the problem).

D. 2004 Jensen et al proposed solution

2004 Jensen et al [37] proposed a solution to the overlap capacitance charge dumping into

source and drain terminals on transition of gate potential which involved using a pair of

parallel MOSFETs switched by a same phase gate signal and an identical type MOSFET

preceding and following this parallel pair, each with shorted drain and source, these two

switched by a gate signal of opposite phase.

For example, the NMOS transistor in our inverter would be replaced by two parallel

NMOS and another NMOS before and after the pair (each of the latter shorted drain and

source). The original signal on this NMOS of the inverter would be provided inverted to the

two shorted NMOS transistors before and after the parallel pair. Basically this results in

using the shorted transistors to dump opposite polarity charge from their gate to source and

gate to drain overlap capacitances at the original source and drain of the now parallel pair

inverter NMOS (or the PMOS, with PMOS replacing NMOS instances above, of any circuit

where this fix was implemented) to cancel the injection current anomalies normally seen on

switching of gate potential. See Fig. 11 for depiction of relevant MOSFET structures.

We did not test this proposal (it is simply too cumbersome for our purposes here) and

no experimental validation data was offered in the patent application.

30

FIG. 11. Figure 1 from 2004 Jensen et al [37] depicts relevant areas of an n-channel enhancement

IGFET (a MOSFET being a form of insulated gate field effect transistor). The S (source) and D

(drain) regions are heavily n+-doped (i.e., electron donor impurities from Group 15 of the Periodic

Table, e.g., P, As) within a lightly p-doped (electron acceptor impurities from Group 13, e.g., B,

In) substrate. The region labeled 18 is a channel between source and drain. A positive G gate

voltage VGS > Vthresh creates a minority carrier channel (electrons in this case, hence an effective

“n-channel”) of low impedance between S and D. The physical overlap of gate G with source and

drain regions, labeled 24 and 26, produces parasitic overlap capacitances COS and COD. These

dump charges onto their corresponding nodes upon rapid VGS change.

XI. OUR SOLUTION TO THE CBCM CHARGE INJECTION ERROR

Having satisfied ourselves that the mohawk current (positive charge dump to source lead

to Vdd on PMOS turnoff) problem was in the stars as it were and not within us19, and having

observed an increase in error using the Fan et al [38] suggested circuit revision, as discussed

above in Section X C, we decided to simply strip the offending opposite polarity current from

the Vdd current vectors vdd1#branch and vdd2#branch generated by Ngspice and use new

clean copies vd1brclean and vd2brclean for the CBCM measurment. The implementation of

19 “The fault, dear Brutus, is not in our stars, but in ourselves,” Cassius speaking to Brutus in Scene II of

The Life and Death of Julius Caesar, by William Shakespeare, 17th century England.

31

this software solution (the code to shave the mohawk as it were) was relatively trivial in

Ngspice (do expect a few seconds processing delay when you run the circuit file, given the

number of simulation steps is O(105) with more than 70 Ngspice vector arrays each of that

size):

* BEGIN SHAVE THE MOHAWK

* strip the asymmetrical negative return

* currents on pmos turn-off

* get length of vectors to process in loop

let samplelen=length(vdd1#branch)

* create copy of current vectors vdd1#branch,

* vdd2#branch to clean of negative return currents

let vd1brclean = vdd1#branch

let vd2brclean = vdd2#branch

* loop through the new current vectors and

* strip any positive current

* remembering that ngspice views negative return current

* to power supply as positive

* init loop counter and vector index

let loop = 0

* while loop counter is less than the length of

* the current vectors (begin with index 0)

* check for a positive current value and replace

* it with zero as not relevant to charging C

while loop < samplelen

32

if vd1brclean[loop] > 0

let vd1brclean[loop] = 0

end

if vd2brclean[loop] > 0

let vd2brclean[loop] = 0

end

let loop = loop + 1

end

* END SHAVE MOHAWK

See, for example, Ngspice-27 circuit file 20211209CBCMinvOnlyStripMohawk.cir (code given

in Appendix C.

A. Alternative fix if you prefer more manual work

If you isolate one of the PMOS capacitive load charging current spikes (when the output

of the inverters goes HIGH, see Fig. 7 and Fig. 8) from each inverter and integrate its value

(integrate the Ngspice current vector) from its beginning to end (rather than averaging the

current over the entire simulation as in the original CBCM measurement method), you will

eliminate the mohawk reverse polarity current problem, which occurs only during PMOS

turnoff (input going HIGH).

Take the difference between the two integrated charging spikes from reference and test

inverter PMOS currents in their respective leads to the two Vdd supplies (which is a difference

in charge at this point, being the difference in the integrals of current over a time interval).

Divide the difference in charge by the Vdd voltage and you obtain an accurate load capacitance

result, similar to what we did in Equation 8 (I∆ ∆t ≈
∫ t2
t1
I(t) dt for an approximately

linear ramp I(t)). The following is some sample Ngspice-27 code to accomplish this in a

terminal session following a run of the simulation circuit file 20211209CBCMinvOnly.cir (see

Appendix B) with the test inverter loaded by a discrete 1.5 fF capacitor rather than the

NAND2 X1 input, using uncorrected CBCM:

33

No. of Data Rows : 100125

inv1rmscur = -1.017119e-06 from= 0.000000e+00 to= 5.000000e-09

inv2rmscur = -2.708041e-06 from= 0.000000e+00 to= 5.000000e-09

capmeasured = 1.537202e-15

Actual test capacitance on 2nd inverter was 1.5 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

Vdd supply voltage was 1.1 volts DC

ngspice 1 -> meas tran inv1Cur INTEG vdd1#branch from=600p to=707.143p

inv1Cur = -1.83109e-15 from= 6.00000e-10 to= 7.07143e-10

ngspice 1 -> meas tran inv1Cur INTEG vdd2#branch from=600p to=708.182p

inv1Cur = -3.49556e-15 from= 6.00000e-10 to= 7.08182e-10

ngspice 1 -> print (abs(1.83109e-15 - 3.49556e-15)/1.1)

(abs(1.83109e-15 - 3.49556e-15)/1.1) = 1.513155e-15

For the above interactive session after running the circuit file, we obtained the beginning

and end (i.e., the integration limits) of the PMOS charging spike (the negative current spike

in the following figure, though it is positive conventional current from Vdd) by examining the

plot of input waveforms and the Vdd current for the particular inverter and mouse-clicking

on a point slightly in advance of the end of the current spike20 Fig. 12:

We see that the uncorrected CBCM measurement (1.537202 fF) of the 1.5 fF capacitor

(loading the test inverter) was about 2.5% high due to the presence of the mohawk charge

dumping current at PMOS turnoff. Integrating only the PMOS capacitive charging current

spike produces a more accurate value (1.513155 fF), high by only 0.9%. This technique

is then another means of correcting the CBCM method, though not as attractive because

requires direct participation of the observer, i.e., would be difficult to implement in hardware,

as is the intent of the original CBCM proposal.[1]

20 Ngspice prints the x and y coordinates in the terminal window when you mouse-click in a plot window.

34

XII. REVISED CBCM RESULTS

We now make some measurements using the revised CBCM method.

A. Test calibration capacitor

With C test equal to 1.5 fF (instead of the input load of the NAND2 X1 gate) we mea-

sure 1.51224 fF using the Ngspice-27 circuit file 20211209CBCMinvOnlyStripMohawk.cir (code

given in Appendix C) implementing the charge-based capacitance measurement method dis-

cussed in in Section VI and corrected with the method discussed in Section XI:

capmeasured = 1.512244e-15

Actual test capacitance on 2nd inverter was 1.5 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

Vdd supply voltage was 1.1 volts DC

ngspice 1 -> print 1.512244/1.5

1.512244/1.5 = 1.008163e+00

Our error measuring this calibration capacitor at 1 GHz is then less than 1%.

B. 1 GHz test NAND2 X1 loaded 59 fF

Using circuit file 20211209CBCMmeasNANDStripMohawk.cir (code given in Appendix D),

we now go to the original goal of measuring the input capacitance of the NAND2 X1 input

A1 (labeled in1 in schematic 1):

capmeasured = 1.708691e-15

(equivalent NAND input capacitance being charged by 2nd inverter, Farads)

(Nangate typical build library suggests NAND2_X1 A1 input 1.599 fF)

Load capacitance on NAND output: 59 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

Vdd supply voltage was 1.1 volts DC

35

ngspice 1 -> print 1.708691/1.599

1.708691/1.599 = 1.068600e+00

We are within 6.8%21 of the typical corner22 Nangate stdcells-databook.pdf[11] suggested

input A1 capacitance of 1.5990 fF for NAND2 X1. As is seen in the terminal response above

from Ngspice, the NAND2 X1 output (labeled out in our schematic 1, label ZN in stdcells-

databook.pdf) was loaded with a 59 fF capacitor during the run. 59.3567 fF was the upper

load used to specify propagation delay and output transition time in the Nangate stdcells-

databook.pdf. 59.3567 fF was also the maximum capacitance permitted on the NAND2 X1

output in the stdcells.lib file that accompanied our library distribution.[11] stdcells.lib was

built by the Nangate NGLibraryCharacterizer with Spice engine Nanspice v2011 (and char-

acterization corner typical as we have noted previously). Hence we selected 59 fF for our

loaded run.

The INV X1 circuits of our CBCM apparatus may drive up to 60 fF, consulting the same

library references above, so driving the input of the NAND2 X1 should be relatively easy.

C. Run with 1 fF NAND2 X1 load

A quick test with the NAND2 X1 loaded with 1 fF instead of 59 fF23 resulted in a change

in the measured input capacitance:

capmeasured = 1.727344e-15

(equivalent NAND input capacitance being charged by 2nd inverter, Farads)

(Nangate typical build library suggests NAND2_X1 A1 input 1.599 fF)

Load capacitance on NAND output: 1 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

Vdd supply voltage was 1.1 volts DC

ngspice 1 -> print 1.727344/1.599

1.727344/1.599 = 1.080265e+00

21 Compare with 8.67% error with mohawk injection current present running circuit file 20211209CBCM-

measNAND.cir (code given in Appendix E).
22 See Section IV above for discussion of the term “corner.”
23 Modify the parameter NANDLoadCapacitance in circuit file 20211209CBCMmeasNANDStripMohawk.cir,

code given in Appendix D.

36

We measure input capacitance of 1.727344 fF, about 8% off the suggested value (about

a 1% change from the fully loaded measurement earlier). It is not unexpected that load

capacitance of a CMOS gate is reflected to the input, i.e., modifies the input characteristic

somewhat. The Nangate data did not specify what they expected those changes to be, but

1% change is not alarming to us.

D. Run with 100 MHz NAND2 X1 test frequency

A run with the NAND2 X1 loaded with 59 fF at lower test frequency 100 MHz24 resulted

in little change to the measured input capacitance:

capmeasured = 1.730522e-15

(equivalent NAND input capacitance being charged by 2nd inverter, Farads)

(Nangate typical build library suggests NAND2_X1 A1 input 1.599 fF)

Load capacitance on NAND output: 59 fF

Test frequency was 100 MHz

Input rise/fall time was 1E-09 s

Vdd supply voltage was 1.1 volts DC

ngspice 1 -> print 1.730522/1.599

1.730522/1.599 = 1.082253e+00

Testing at 100 MHz we measure 1.73 fF input capacitance, within 8.2% of the typical cor-

ner25 Nangate stdcells-databook.pdf[11] suggested input A1 capacitance of 1.5990 fF for

NAND2 X1.

E. Run with 2 GHz NAND2 X1 test frequency

A run with the NAND2 X1 loaded with 59 fF at higher test frequency 2 GHz (modify the

parameter testfreq in circuit file 20211209CBCMmeasNANDStripMohawk.cir, code given in

Appendix D) resulted in a small change downwards in the measured input capacitance:

capmeasured = 1.538518e-15

24 Modify the parameter testfreq in circuit file 20211209CBCMmeasNANDStripMohawk.cir, code given in

Appendix D.
25 See Section IV above for discussion of the term “corner.”

37

(injection current or mohawk stripped prior)

(equivalent NAND input capacitance being charged

by 2nd inverter, Farads)

(Nangate typical build library suggests

NAND2_X1 A1 input is 1.599 fF)

Load capacitance on NAND output:

59 fF

Test frequency was 2000 MHz

Input rise/fall time was 5E-11 s

Vdd supply voltage was

1.1 volts DC

We measure 1.53851 fF, about 4% lower the Nangate suggested value of 1.599 fF. We note

that at test frequency 2 GHz the output of the NAND2 X1 gate is beginning to slew quite a

bit, i.e., it is just reaching ∼ Vdd when the next input change arrives. See Section VIII for

a detailed discussion of operating frequency limits.

XIII. MANUAL METHOD

For those on a budget, i.e., unable to afford the CBCM pair of inverters, you can simply

drive the NAND2 X1 input in1 with a SPICE pulse generator and calculate the effective

input capacitance using the charge delivered to the gate (see Eq. 2 in Section V).

As we said in Section VII, MOSFETs in CMOS gates are voltage-controlled switches (see

§3.6 [6], or §11.5.1 [4] for example) so it would be inappropriate to drive them with a current

source if the intent is to measure gate input capacitance seen by another CMOS driving

circuit. Accordingly, we use roughly the output Rds of a CMOS circuit for our standard

library 45 nm process, 1 kΩ 26, as the source impedance of our SPICE pulse driver, i.e.,

insert a 1 kΩ resistor in series with the pulse generator +-lead in series with the connection

to the NAND2 X1 input in1 . Example Ngspice code lines:

RTOTARGETC PulseInput in1 1000

and

26 We estimated about that value in Section XV for the NAND2 X1 effective PMOS Rds.

38

VIN1 PulseInput 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWidth} {testperiod})

where in1 is the A1 input of the NAND2 X1 gate in Schematic 1.

For an Ngspice run of the circuit file in Appendix F, we obtain terminal result:

charge transferred to NAND input: (Coulombs)

incurlh = 1.39093e-15 from= 0.00000e+00 to= 1.00000e-10

voltage change on NAND input: (Volts)

maxin1 = 1.088130e+00 at= 1.000000e-10

capacitance of NAND input measured, fF:

nandincap = 1.278276e+00

(Nangate typical build library suggests

NAND2_X1 A1 input is 1.599 fF)

Load capacitance on NAND output:

59 fF

Test frequency was 1000 MHz

Input rise/fall time was 1E-10 s

pulse source output impedance: (ohms)

@rtotargetc[resistance] = 1.000000e+03

Vdd supply voltage was

1.1 volts DC

We measure 1.278276 fF above, 20% lower than Nangate suggested 1.599 fF. The CBCM

results appear more accurate (see test results in Section XII), but the CBCM method requires

more circuit code.

39

XIV. PROPAGATION DELAY

Nangate stdcells-databook.pdf measures propagation delay from 50% input falling/rising

to 50% output falling/rising. For our typical corner build and operating conditions, e.g.,

Vdd = 1.1 V and 25◦ C, the propagation delay of input A1 (our in1) to output ZN (our out)

rising with output loaded with 59 fF is suggested to be 250 ps for an input transition (70%

to 30% falling) 198.5 ps. Let us measure that in our circuit using circuit file 20211209CBCM-

measNANDStripMohawk.cir, code given in Appendix D.

The relevant waveforms are Fig. 13

Our inverter input drive signal at 1 GHz has a rise/fall time of 100 ps (by design) as

seen above in the Ngspice terminal report. However, the outputs of the two inverters rise

and fall at a much faster rate, partly because CMOS inverters have a large gain close to

the switching voltage (the voltage transfer characteristic is very steep at threshold[6]) and

partly because of our two-phase drive which turns on the PMOS and NMOS at separate

times. By the time the innmos signal rises on the inverter inputs to turn on the NMOS

pull down network, the inpmos input has already turned off the PMOS transistor, i.e., the

PMOS transistor has already passed through the initial overshoot operating region (reversed

operating mode, probably synonymous with our overlap capacitance charge dump event)

with its gate exceeding HIGH threshold, as well as the next region where it eventually turns

off completely[40]. Refer to Fig. 7 above for phase relationship of innmos and inpmos.

The result is that the output of the test inverter X2, which will be the in1 input to the

NAND2 X1 gate (refer to schematic 1 of the NAND X1 circuit and schematic 5 of the CBCM

two-inverter circuit, where C test on inverter X2 out2 will be replaced by a line to in1 input

of the NAND2 X1 gate), will present a 70% to 30% falling transition of only 10 ps to the

NAND2 X1 gate input. We measured that in Ngspice (typing in the following commands

in the interactive Ngspice session following the initial run of the circuit file), referring to

Fig. 13, first finding the high point of the input signal before it falls (where we used the

slight overshoot increase over Vdd)

ngspice 1 -> meas tran maxinvolt MAX_AT in1 from=0.1n to=0.15n

maxinvolt = 1.206750e-10 with= 1.152230e+00

Then we obtained the time interval from when in1 declined to (0.7)(1.15223 V) = 0.80656 V

to (0.3)(1.15223 V) = 0.34567 V:

40

meas tran tdiff TRIG in1 VAL=8.0656e-01 FALL=1 TARG in1 VAL=3.4567e-01 FALL=1

tdiff = 1.00896e-11 targ= 1.568469e-10 trig= 1.468379e-10

(We omitted the prompt in the meas command line above because the line was exceeding

available column width.) tdiff of 10.00896 ps is then the NAND2 X1 input falling transition

time using the Nangate criteria. The closest input transition selection for Nangate propaga-

tion delay estimate is 1.2 ps, for which the 59 fF-loaded NAND2 X1 output rising propagation

delay is 150 ps. We measure tpLH = 64.745 ps from input fall to 50% point to output rise to

50% point.

meas tran tdiff TRIG in1 VAL=5.7612e-01 FALL=1 TARG out VAL=5.4984e-01 RISE=1

tdiff = 6.474545e-11 targ= 2.170982e-10 trig= 1.523527e-10

Our observations of simulated performance of the CMOS standard circuits appears to be

consistent with the library general specifications (somewhat faster in general).

XV. OUTPUT RESISTANCE OF NAND2 X1

We now estimate the NAND2 X1 output resistance on the output transition tpLH (output

LOW to HIGH). We assume the reader can apply the methods presented to the alternative

case, output HIGH to LOW transition tpHL.

A. Method using exponential characterization

We treat the output voltage waveform of the switch as an exponential with a time constant

defined by RS and Ceq[41](citing [42])

Vo = V

[
1− exp

(
−t

RSCeq

)]
(18)

where RS is the output impedance of the gate and Ceg the equivalent capacitive load on

the output. For our purposes, Ceg = CL = 59 fF, which should dominate any intrinsic

capacitance of the PMOS or NMOS transistors.

Considering the equivalent output resistance RS = RDS of the PMOS transistor in the

output transition from LOW to HIGH, our time interval will be the rise time tr which we

define here (departing from the Nangate definition earlier) as the time required to rise from

0.1 to 0.9 of the final output voltage at the NAND2 X1 output. We solve for tr using Eq. 18:

41

Vo
V

= 0.9 =

[
exp

(
−t0.9V
RSCeq

)]
ln(0.9) = −0.1053 =

(
−t0.9V
RSCeq

)
=⇒ 0.1053RSCeq = t0.9V

Vo
V

= 0.1 =

[
exp

(
−t0.1V
RSCeq

)]
ln(0.1) = −2.3026 =

(
−t0.1V
RSCeq

)
=⇒ 2.3026RSCeq = t0.1V

tr = RSCeq (t0.1V − t0.9V) = 2.19722(RSCeq) ≈ 2.2(RSCeq)

(19)

Knowing Ceq = CL, if we measure the times at which the 0.1 and 0.9 voltage points on the

rising output transition occur to obtain tr, we then obtain an estimate of the PMOS drain

source resistance

RS = RDS = tr/(2.2CL) (20)

using the result of Eq. 19.

Refer to the waveforms in Fig. 13 for the 1 GHz run of NAND2 X1 with CL = 59 fF. We

run the circuit file 20211209CBCMmeasNANDStripMohawk.cir (see Appendix D) in Ngspice

and interactively enter the following commands in the open terminal window. First we

obtain the final voltage of our output rising signal, selecting an interval to measure on

Fig. 13 where out appears to be leveling out, e.g., t = 0.3 to t = 0.4 ns:

ngspice 1 -> meas tran maxinvolt MAX_AT out from=0.300n to=0.400n

maxinvolt = 3.999750e-10 with= 1.094780e+00

It appears our final voltage on out rising will be 1.09478 V. We then calculate the 0.1 and

0.9 fractions of that voltage, making use of Ngspice interactive calculator capability:

ngspice 1 -> print 1.094780e+00*0.1

1.094780e+00*0.1 = 1.094780e-01

ngspice 1 -> print 1.094780e+00*0.9

1.094780e+00*0.9 = 9.853020e-01

42

We now have the two output voltage trigger points, so will enter the Ngspice command to

measure the time difference between the output out at those two points:

meas tran tdiff TRIG out VAL=1.094780e-01 RISE=1 TARG out VAL=9.853020e-01 RISE=1

tdiff = 1.231943e-10 targ= 2.910126e-10 trig= 1.678183e-10

We obtain tr = 123.1943 ps for the tdiff. Now we apply Eq. 20 using our CL = 59 fF value:

ngspice 1 -> print 1.231943e-10/(2.2*59e-15)

1.231943e-10/(2.2*59e-15) = 9.491086e+02

We obtain an estimated average Rds = 949 Ω for the single M3 PMOS transistor in saturated

pullup mode, i.e., charging the output capacitance CL.

We should note that in this run (as in the other measurements of the in1 input capacitance

earlier) the second input in2 of the NAND2 X1 gate was tied to Vdd via a 10 kΩ resistor (see

line declaring circuit element RX32 in the circuit file Appendix D). Recall that a NAND2

gate output is LOW/ground if both inputs are HIGH/Vdd (and output HIGH for all other

combinations). The output goes HIGH then when in1 falls to ground, turning on only the

M3 PMOS transistor of the circuit (refer to Schematic 1). We have therefore measured the

effective drain-source resistance of a single PMOS of the pair in NAND2 X1. If both inputs

had dropped to LOW, we would have expected to measure the effective parallel resistance of

both PMOS transistors, M3 and M4 as the output climbed to HIGH/Vdd, charging through

both PMOS in ON state.

B. Method using integration of VDS(t) and ID(t)

As a check on this resistance result, it is possible to obtain an equivalent drain resistance

Reg by taking the average of the integral of the ratio of the functions VDS(t) and ID(t) over

the time interval of interest, e.g., the time the MOSFET transistor is ON and charging a

43

load capacitance.[6]:

Req = averaget=t1...t2 [Ron(t)]

=
1

t2 − t1

∫ t2

t1

Ron(t) dt

=
1

t2 − t1

∫ t2

t1

VDS(t)

ID(t)
dt

(21)

Note that, in general27

m∫
n

f(x)

g(x)
dx 6=

m∫
n

f(x) dx

m∫
n

g(x) dx

(22)

However, we have the discrete time data for the two functions in the form of the Ngspice

vectors28 for VDS(t) and ID(t) generated by the BSIM4v4[3] simulation.

We mentioned BSIM4 briefly in Section III above. The Berkeley Short-channel IGFET

Model is a compact model. A compact model is basically a set of equations expressing MOS-

FET currents and charges (or, depending on your viewpoint, capacitances29) as functions

of terminal voltages. The set of equations in this case is more than 20 pages and there are

more than 100 model parameters. BSIM4 “enables circuit designers to accurately simulate

CMOS circuits by including gate tunneling, quantum effect, and RF effects.”[44] We select

the BSIM4.8.1 option in our Ngspice-27 model cards.

We will consider the quotient of the two internal BSIM4 data vectors for VDS(t) and ID(t)

of the specific transistor M3 (refer to Schematic 1)

@m.x3.m3[vds]/@m.x3.m3[id]

to be a new function (a vector of quantities) consisting of the element-by-element (at time

step resolution of the simulation) quotient of the complex BSIM4v4 modeling functions for

drain-source voltage and drain current of the MOSFET over time. We may then integrate

27 Gradshteyn and Ryzhik[43] §3-4, Definite Integrals of Elementary Functions contained no general formulas

for rational functions, although some special cases in §3.11 were covered.
28 We remind the reader that the term “vector” here means a sequence of data accessible by one or more

indices.
29 Cij = δij(∂Qi/∂dVj), where i, j ∈ {g, b, s, d}, i.e., gate, bulk, source and drain terminals and δij is the

Kronecker delta (equals (−1) if index i 6= j, (+1) otherwise). We look at the capacitance modeling in

BSIM4 in more detail in Appendix A.

44

that new function (represented as a vector of quotients) and divide the result by the δt of

the limits of integration to obtain the average Req, as set out in Eq. 21.

Accordingly, we added the following Ngspice lines to the control code within the circuit

code file 20211209CBCMmeasNANDStripMohawk.cir (see Appendix D):

* save the NAND2 PMOS M3 pullup transistor BSIM4 vectors id, and vds

save all @m.x3.m3[id] @m.x3.m3[vds]

to obtain access to the BSIM4v4 internal id drain current of PMOS transistor M3 and its vds

drain-source voltage. After running the circuit file in Ngspice, with Ngspice session window

still open, we enter the following interactive commands to create the new quotient vector,

integrate it, and divide by the time interval of integration (for closer comparison to the

result above in Section XV A, we use the same time interval delineated by t0.1V = 167.8 ps

and t0.9V = 291 ps):

ngspice 1 -> let vdsByIdVector = @m.x3.m3[vds]/@m.x3.m3[id]

ngspice 1 -> meas tran m3IDinteg INTEG vdsByIdVector from=1.678183e-10 to=2.910126e-10

m3IDinteg = 1.28845e-07 from= 1.67818e-10 to= 2.91013e-10

ngspice 1 -> set deltaT = (2.910126e-10-1.678183e-10)

ngspice 1 -> print m3IDinteg/$deltaT

m3idinteg/(2.910126e-10-1.678183e-10) = 1.045866e+03

That RDS = 1.045 kΩ calculated using the averaged integral of the ratio of the VDS(t)

and ID(t) function vectors compares well with the result obtained above in Section XV A

using an exponential characterization, estimated average Rds = 949 Ω, about 10% difference.

XVI. CONCLUSION

We have taken you along on our own exploration of the subject of input capacitance in

CMOS logic circuits (and, as is our habit, of anything interesting that came up along the

way) and hope you benefit from the account. We have used dynamic measurement in circuit

operating context, which is somewhat of a departure from the usual techniques, benefiting

from the CBCM approach[1] of Dennis Sylvester and Chenming Hu. CBCM is a useful tool

to have available, if for no other reason than to validate the results of simpler approaches.

45

Appendix A: Non-linear capacitance in the MOSFET

In our simulations, we relied on the BSIM4 MOSFET simulation model to handle the

nonlinear variation of MOSFET capacitance associated with the gate, bulk, source and

drain terminals as a function of charge transport and voltage. We will attempt here to give

a brief description of the relevant portions of the BSIM4 model. First, view the following

depictions30 of the relevant capacitances. Figure 14 presents a cross section of a MOSFET

with relevant capacitances.[45]

We find it necessary to maintain a conceptual picture of the MOSFET31, because almost

every writer changes the symbolic term labels as well as the way the models are presented,

e.g., the overlap capacitance between gate and source Cos in Figure 14 is CGSO (contained

in composite term CGS) in the following Figure 15[6]:

In Figure 15 we find that the entity representing capacitance seen at a MOSFET gate

G with respect to source S, CGS, is here a composite mixing the intrinsic channel charge

relation between gate and source, GGCS, and the extrinsic overlap capacitance CGSO (we

grant that it is useful to keep in mind that both components contribute if one is able to

recognize the various disguises as it were of the players).

In an equivalent circuit for a MOSFET transient model Figure 16, the junction capaci-

tances (Cjs and Cjd in Figure 14) may be accompanied by diodes also. This is because they

arise at the incidental junction (which occurs along the area at the bottom and perimeter of

source and drain regions) between n and p semiconductor regions, e.g., the n+-doped source

region and the p-type bulk in which it rests in an NMOS transistor.

1. Intrinsic core capacitance model

Now, with the dotted-line-boxed intrinsic MOSFET region of Figure 14 in mind, we zero

in on the four-terminal transcapacitance model of the intrinsic capacitance region, illustrated

in simplified form in Figure 17. BSIM4 models the intrinsic capacitance of the four-terminal

MOSFET (g gate, s source, b bulk, d drain) using charge assigned to each of those internal

30 The reader may want to look again at the CMOS figures and discussion in Section IV A and Section IV B

above for physical context.
31 That is, maintain a picture of the bulk MOSFET technology which is our focus. As we mentioned in

Section IV though, as of 2021 Intel is already shipping 10 nm FinFET processors, where gates may contact

both top and sides of the channel. In other words, technology is changing rapidly. That being said, the

principles we discuss remain generally applicable.

46

(intrinsic) terminals, i.e., the gate charge Qg, the bulk charge Qb, the source charge Qs and

the drain charge Qd. Charge conservation is assured by using these terminal charges rather

than terminal voltages as state variables (see §7.2 Methodology for Intrinsic Capacitance

Modeling [35])

The gate charge Qg is comprised of mirror charges (see Eq. A1 below re “mirror charges”)

from the channel charge (Qinv), accumulation charge (Qacc) and substrate depletion charge

(Qsub). (see §7.2.1 [35]).

Referring to §7.2.1 [35], accumulation charge Qacc and the substrate charge Qsub are

associated with the substrate (what we have generally referred to as the p-type body or bulk

semiconductor in our NMOS transistor). The channel charge Qinv derives from the source

and drain terminals[35]:

Qg = − (Qsub +Qinv +Qacc) lhs is “mirrored” on rhs

Qb = Qacc +Qsub depletion charge is included here

Qinv = Qs +Qd the mobile charge is partitioned between source and drain

(A1)

They (BSIM4) divide the substrate charge into a charge at zero source-drain bias and a

non-uniform charge in the presence of drain bias, but we are not concerned with that level

of detail here. The charge along the channel is integrated to obtain the total gate charge

Qg.

Now that we have an idea of the identity of the four intrinsic MOSFET terminal charges,

consider that a two-terminal capacitor has charges Q1 and Q2 with Q1 = −Q2, i.e., the sum

of the charges is zero and the charge is a function of the voltage difference between the two

terminals V12 = V1 − V2. The small-signal characteristic of such a capacitor is completely

described by C = dQ1/dV12.[47] (a form we used in Eq. 2, in Section V above).

With a four-terminal capacitor, the charges on the four terminals must sum to zero (that

is, charge conservation requires Q1+Q2+Q3+Q4 = 0) and though these charges must depend

on voltage differences between the terminals, they are otherwise arbitrary functions.[47][48]

One may consider the four charges separately as functions of the four terminal voltages,

Q1(V1, V2, V3, V4) . . . Q4(V1, V2, V3, V4). The partial derivatives form a four-by-four matrix,

∂Qi/∂Vj| i = 1, . . . 4, j = 1, . . . 4 (which we present explicitly in Eq. A4 below). In the

47

present context, the indices will be, rather than numbers, g, d, s, b, signifying gate, drain,

source and bulk MOSFET intrinsic terminals.

Such a matrix has a direct interpretation in terms of AC measurements. If an AC voltage

signal is applied to terminal j with the other terminals AC grounded, and AC current into

terminal i is measured, the current is i2πf · ∂Qi/∂Vj (i is
√
−1).[47][48]

Charge conservation (equivalent to observing Kirchoff’s current law32) requires that each

column sum to zero and for the matrix to be reference independent (charges can only de-

pend on voltage differences) each row must sum to zero.[45] In general, the matrix is not

symmetrical: ∂Qi/∂Vj need not equal ∂Qj/∂Vi. For example, Cgd = ∂Qg/∂Vd represents

the flow of current from the gate in response to a change in drain voltage (Miller feedback).

On the other hand, Cdg = ∂Qd/∂Vg represents a capacitive current flowing from the drain

in response to a change in gate voltage (Miller feedthrough).[48][47]

The terminal input capacitances (the four terminals CGG, CSS, CDD, CBB in Figure 17)

are the diagonal matrix entries, i.e., where i = j:

Cii = ∂Qi/∂Vi i = j (A2)

and the transcapacitances are the negative of off-diagonal entries

Cij = −∂Qi/∂Vj i 6= j (A3)

Arranging those terms in the four-by-four matrix we mentioned earlier, we see:

M =

Cgg −Cgd −Cgs −Cgb

−Cdg Cdd −Cds −Cdb

−Csg −Csd Css −Csb

−Cbg −Cbd −Cbs Cbb

 (A4)

where the rows are all partial derivatives of charge Qi with respect to the column index

j voltage Vj. For example −Cgd, the second position in row one, is Cij = −dQg/dVd, the

partial derivative of gate charge Qg with respect to drain terminal voltage Vd (which we

mentioned above is also known as Miller feedback). The minus signs indicate the result of

explicitly applying the Kronecker delta δij to each entry of the matrix, i.e., the elements

32 As Richard Feynman put it, “conservation of charge requires that any charge which leaves one circuit

element immediately enters some other circuit element...we require that the algebraic sum of the currents

which enter any given junction must be zero.”[49]

48

with equal indices (i = j) receive a positive sign while all others (i 6= j) receive a minus

sign.

The complete MOSFET intrinsic large-signal equivalent circuit based on this transcapac-

itance matrix is then Figure 18:

2. Model with extrinsic and intrinsic components

The complete MOSFET large-signal equivalent circuit is depicted in Figure 19. In that

figure, the intrinsic model of Figure 18 is replaced (mostly) by a dotted-line area labeled

“core intrinsic.” This is approximately what is occurring in the BSIM4 model. The cited

paper[46] provides another figure which is more specific in how the matrix transcapacitances

are incorporated in the equivalent circuit containing both intrinsic and extrinsic components,

but that includes ten more equations relating the sixteen elements of the matrix in Eq. A4

above (and introducing several new composite terms). We do not believe this is going to be

helpful for the reader in obtaining a general idea of how the BSIM4 models MOSFETs.

3. BSIM4 RF high-speed settings

We should note that we are running the BSIM4 simulations (refer to the manual for

BSIM4 thoughout our discussion [35]) with the high-speed RF (radio frequency) models

enabled, i.e., with a charge-deficit non-quasi-static (NQS) model and substrate resistance

network model (looking approximately like the resistors in Figure 19).

We set trnqsMod=1 33 to turn on the charge-deficit NQS model for transient simula-

tion. Other simulation models often ignore the finite time required for charge to build up

along the MOSFET channel, i.e., quasi-static models assume an instantaneous charging of

the inversion layer, adversely affecting accuracy of high-speed simulations.[45] BSIM4 NQS

uses an Elmore[50] equivalent circuit to model this delay time34. An internal node Qdef (t)

tracks the deficit/surplus channel charge necessary to reach equilibrium, i.e., Qdef will de-

cay exponentially into the channel with NQS relaxation time τ (based on the Elmore RC

characterization).[45]

33 We are talking about settings made in the model cards, see Appendix G and Appendix H.
34 The Elmore delay is equivalent to the first-order time constant of the network[6], i.e., the lowest frequency

pole of the original RC circuit characterizing the network is retained.[45]

49

We set rbodyMod=1 to turn on a five-resistance substrate network to model high fre-

quency coupling through the substrate. We set rgateMod = 1, which generates a bias-

independent internal electrode gate resistance (see §9.2 [35]).

BSIM4 also applies a charge-thickness model (CTM) to correct overestimates of intrin-

sic capacitance. Without CTM, this discrepancy is more pronounced in thinner gate oxide

devices because it is assumed that the inversion and accumulation charge are located im-

mediately at the interface of semiconductor and oxide of gate, whereas numerical quantum

simulations show significant variation of the charge distribution with depth into the bulk

semiconductor region below the oxide interface. CTM introduces a capacitance in series

with the oxide capacitance and an analytical DC charge thickness model based on numeri-

cal solutions of the applicable Schrödinger, Poisson and Fermi-Dirac equations (§7.3 [35]).

4. A look under the hood

We will caution at the outset that in analogy to having the thermodynamic equations

for a Ferrari engine, the practical use of the equations is in the operation of the car, not in

attempting to relate internal abstracted details to the, e.g., acceleration of the car (unless

you are a Ferrari design engineer). So too should one consider the internal BSIM4 variables

that are available in some SPICE implementations, e.g., our Ngspice-27 software, i.e., the

point of having a model in software is to avoid having to try to do complicated and tedious

manual calculations.

That being said, BSIM4v4 makes it possible to save all sixteen transcapacitance values

(see Chapter 31 of the Ngspice-27 Manual, Model and Device Parameters[18]), i.e., the

vectors containing the instantaneous values of the elements of the matrix in Eq. A4 during

each time step of a simulation, as we did with the MOSFET vds and id internal vectors

above in Section XV B.

The values along the diagonal of the matrix in Eq. A4 are the terminal capacitance values

(from the partial derivatives discussed above in Section A 1) for the gate, drain, source and

body, so might be expected to produce positive values correlated directly with capacitance

seen at those terminals. It is easy to remember their Ngspice BSIM4 internal parameter

labels because being on the diagonal, the two indexes will be equal, e.g., the capacitance of

the gate terminal is cgg, capacitance of the drain terminal is cdd.

50

The off-diagonal matrix elements, e.g., cgs and csg, on the other hand, are transcapaci-

tances and are typically negative and not recognizable as capacitance as one might expect to

observe at a terminal (see the pairs of capacitors surrounding the core terminal capacitances

in Figure 18). As we noted earlier, [46] provides a circuit in their Fig. 6 and their equations

(8a) through (10e) that suggest one way of interpreting the transcapacitances in terms of

more or less recognizable equivalent capacitances (composed of combinations of transcapac-

itances) associated with four current sources (if you want to dive into that subject in more

depth).35

a. Graph BSIM4 internal capacitances

In any case, we may save the intrinsic core capacitances and the relatively constant body-

drain and body-source diode capacitances of the PMOS transistors of our CMOS INV X1

inverters with the following Ngspice code (see Ngpice manual [18] §31.6.9.1):

save all @m.x2.mp1[cgg] @m.x1.mp1[cgg]

+ @m.x2.mp1[cdd] @m.x1.mp1[cdd]

+ @m.x2.mp1[css] @m.x1.mp1[css]

+ @m.x2.mp1[cbb] @m.x1.mp1[cbb]

+ @m.x2.mp1[capbd] @m.x1.mp1[capbd]

+ @m.x2.mp1[capbs] @m.x1.mp1[capbs]

As in Section IX, we execute an Ngspice circuit file (with the code above inserted in

the control section) with two CMOS inverters, gate signals at 1 GHz, load a calibration

capacitor of 1.5 fF on the test inverter x2 (refer to schematic Fig. 5). We will look briefly

at the effective capacitance seen at the PMOS gate during the PMOS turn-off event we

examined in Section X). We will plot the capacitance values first. To put the observations

in context, we repeat the PMOS gate waveform that turns off the transistor at t = 1 ns

through t = 1.1 ns Figure 20:

The Ngspice code to plot that figure (either interactive in terminal or inserted in circuit

file control section) is:

35 It is annoying that BSIM4 is ostensibly open source, yet the details of the capacitance model are only

available in a book for purchase.[51] Much of what we presented in Section A 1 was from sources other

than the BSIM4 manual.

51

plot inpmos xl 0.95n 1.15n

Next we plot the instantaneous gate, source and drain capacitance values associated with

x1 and x2 inverters in the simulation interval around PMOS turnoff at t = 1 ns Figure 21:

The Ngspice code to plot that figure (either interactive in terminal or inserted in circuit

file control section) is:

plot @m.x2.mp1[cgg] @m.x1.mp1[cgg]

+ @m.x2.mp1[cdd] @m.x1.mp1[cdd]

+ @m.x2.mp1[css] @m.x1.mp1[css]

+ xl 0.95n 1.15n

We now plot the cbb body terminal capacitance from Eq. A4, as well as the extrinsic

source-body and drain-body junction diode capacitances, capbs and capbd Figure 22. For

context, capbs and capbd are shown as junction capacitances Cjs and Cjd in Figure 14.

With the following Ngspice code we summed the average of these BSIM4 internal capac-

itances for the unloaded x1 inverter PMOS transistor over our PMOS turnoff interval:

echo "sum of average Ward-Dutton capacitances along diagonal "

echo "and source-body and drain-body junction diode capacitances "

echo "from beginnng of PMOS turnoff to end of turnoff x1 inv"

echo ""

meas tran capavgcgg AVG @m.x1.mp1[cgg] from=1n to=1.1n

meas tran capavgcdd AVG @m.x1.mp1[cdd] from=1n to=1.1n

meas tran capavgcss AVG @m.x1.mp1[css] from=1n to=1.1n

meas tran capavgcbb AVG @m.x1.mp1[cbb] from=1n to=1.1n

meas tran cavgcapbd AVG @m.x1.mp1[capbd] from=1n to=1.1n

meas tran cavgcapbs AVG @m.x1.mp1[capbs] from=1n to=1.1n

echo "sum of average capacitances during turnoff (F):"

print capavgcgg + capavgcdd + capavgcss + capavgcbb + cavgcapbd + cavgcapbs

We obtain terminal output:

sum of average Ward-Dutton capacitances along diagonal

52

and source-body and drain-body junction diode capacitances

from beginnng of PMOS turnoff to end of turnoff x1 inv

capavgcgg = 2.876370e-16 from= 1.000000e-09 to= 1.100005e-09

capavgcdd = 2.316269e-16 from= 1.000000e-09 to= 1.100005e-09

capavgcss = 5.021677e-17 from= 1.000000e-09 to= 1.100005e-09

capavgcbb = 7.716284e-17 from= 1.000000e-09 to= 1.100005e-09

cavgcapbd = 3.166634e-16 from= 1.000000e-09 to= 1.100005e-09

cavgcapbs = 5.040000e-16 from= 1.000000e-09 to= 1.100005e-09

sum of average capacitances during turnoff (F):

capavgcgg + capavgcdd + capavgcss + capavgcbb + cavgcapbd + cavgcapbs

= 1.467307e-15

The sum of the averaged capacitances in turnoff above is 1.467 fF, These variables, of course,

are not intended to be summed in this way, e.g., capbd is usually considered to be a self-load

on the output of a gate (see §5.4.1 [6], for example). Also, the input capacitance of the

inverter would include the parallel input capacitance of the paired NMOS transistor gate

(the pull-down transistor in the inverter circuit).

It does appear though that a subset of the applicable capacitances of the PMOS transistor

shown added with those of the paired NMOS (not measured) would be consistent with the

suggested total gate input capacitance of suggested of this standard inverter typical of 1.7 fF

in the stdcells-databook.pdf36

b. Graph BSIM4 internal charge variables

It is perhaps also instructive to look at the charge variables in order to cut through some

of the abstraction in Section A 1. We may add the following commands to the control section

of one of our circuit files:

save all @m.x1.mp1[qg] @m.x1.mp1[qs] @m.x1.mp1[qd]

+ @m.x1.mp1[qinv] @m.x1.mp1[qb]

+ @m.x2.mp1[qg] @m.x2.mp1[qs] @m.x2.mp1[qd]

36 We briefly discussed the stdcells-databook.pdf in Section IV C and Section VIII A.

53

+ @m.x2.mp1[qinv] @m.x2.mp1[qb]

From Section A 1 and Eq. A1 you will recognize the charge variables. We insert some

additional commands in the control section to obtain the charge before turnoff and following

(for inverter x1, which is indistinguishable at this scale from x2), compare the gate charge

Qg lost with that of the sum of Qb and Qs + Qd and plot the saved charges. A portion of

the terminal result is copied here:

qq gate positive charge loss at turnoff:

(qgval1 - qgval2) = 3.123873e-16

approx. equals qb + qs + qd loss negative charge

((qbval1 - qbval2) + qsval1 + qdval1) = -3.12398e-16

We see that the sum of Qb and Qs + Qd lost during PMOS turnoff in x1 from t = 0.99 ns

to t = 1.1 ns was −312.398 aC (atto Coulomb) and the loss of positive gate charge Qg over

that interval was almost identical, 312.3873 aC, consistent with Eq. A1. This is observed in

the plot of these variables in Figure 23:

We did plot the difference of these charge variables for x1 and x2, looking for obvious

change in the BSIM4 MOSFET charge behavior between unloaded and loaded inverters to

account for the mohawk injection current we examined in Section X, but found only some

small variation less than 0.5 aC that occurred briefly at the beginning and end of the turnoff

period. It seemed unlikely this would produce the ∼ 51 aC excess charge dumped by x1, a

value we obtained by integrating the drain and source currents of both inverters over the

relevant PMOS turnoff interval, then taking the difference in resulting charge.

Appendix B: Original CBCM measure discrete cap Ngspice-27 circuit code

The following is the Ngspice-27 circuit file named 20211209CBCMinvOnly.cir. It imple-

ments the original CBCM method (without correction for mohawk injection current) mea-

suring a discrete load capacitor.

CHARGE BASED CAPACITANCE MEAS OF DISCRETE C WITH INVERTER PAIR

* test a discrete capacitor with CBCM method

* two inverter CBCM charge-based capacitance measurement setup

54

* the 2nd inverter is the test vehicle which charges load C

* see

* Analytical Modeling and Characterization

* of Deep-Submicrometer Interconnect

* by Dennis Sylvester and Chenming Hu, PROCEEDINGS OF THE IEEE,

* VOL. 89, NO. 5, MAY 2001

* using Ngspice-27 Creation Date: Tue Dec 26 17:10:20 UTC 2017

* using BSIM4 level=54 mosfet models from process file

* /FreePDK45/ncsu_basekit/models/hspice

* /tran_models/models_nom/NMOS_VTL.inc

* in which we updated the version statement from 4.0 to 4.8

* and enabled RF high speed support

* the W and L dimensions of INV_X1

* come from NCSU FreePDK 45nm

* used by Christopher Torng 2019 for

* a 45nm ASIC design kit for mflowgen

* we use ngspice 25 degree C default circuit temperature,

* and vdd 1.10v per

* NangateOpenCellLibrary_typical

* Build Date: Thursday Feb 17 15:07 2011 library

* PARAMETERS for command lines,

* CSPARAMETERS for lines within control section or echos/prints

* refer to ngspice-27 manual for syntax

* Simulation time setup

* desired pulse train frequency in Hz

.param testfreq=1000e6

55

* printable as MHz

.csparam testfreqPrintable={testfreq/1e6}

* the period is then 1/frequency in seconds

.param testperiod=’1/testfreq’

.csparam testperiodctl={testperiod}

*.csparam testperiodSmallerForPlotctl={testperiod*0.7}

.csparam testperiodSmallerForPlotctl={testperiod*1.1}

* how many cycles at specified frequency should be analyzed

.param testcycles=’5’

* length of the simulation in seconds will be

* number of cycles times period

.param ttime=’testperiod*testcycles’

.csparam ttimectl={ttime}

* how many simulation steps desired:

.param numberOfStepsInSim=100000

* resolution is length of simulation divided by steps

.param transstepsize=’ttime/numberOfStepsInSim’

* power supply DC voltage, using

* Nangate typical corner Vdd=1.10 v, see

* NangateOpenCellLibrary_typical Build Date: Thursday Feb 17 15:07 2011

.param DCsupplyVoltage=1.10

* want to space multiple voltage plots clearly,

* so get ceiling of DCsupplyVoltage

.param PlotMultiVoltsSpacer=(DCsupplyVoltage+.9)

* need a csparam form to use in the control section

.csparam PlotMultiVoltsSpacerForCTL={PlotMultiVoltsSpacer}

* similarly, need DCsupplyVoltage param that works in control section

.csparam DCsupplyVoltageForCTL={DCsupplyVoltage}

* for y limit if plot n traces together, say n=4

.param numOfVoltTraces=4

.csparam DCsupplyVoltageForYLIM={PlotMultiVoltsSpacer*numOfVoltTraces}

56

* two-phase pulse train input stimulus parameters

* note rise/fall based on 20% of PMOS pulse width

.param RiseFallPercent=0.20

.param HalfPeriod=’(testperiod/2)’

*.param PulseWpmos=’(HalfPeriod)-(HalfPeriod*2*RiseFallPercent)’

.param PulseWpmos=’(HalfPeriod)’

.param TdelayBeginNMOS=’(HalfPeriod*RiseFallPercent*1.1)’

*.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*4*RiseFallPercent)’

.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*2.2*RiseFallPercent)’

.param TriseOrFall=’(PulseWpmos*RiseFallPercent)’

.csparam TriseOrFallPrintable={TriseOrFall*1}

* test capacitance to be measured (if make changes below)

.param TestCapacitance=1.5fF

.csparam TestCapacitancePrintable={TestCapacitance*1e15}

* BSIM4 level=54 mosfet models from

* 2006 45nm_bulk.pm process file

* which we updated the version statement from 4.0 to 4.8

.include modelcard.nmos

.include modelcard.pmos

* use NMOS_VTL for the model name nmos in instantiation

* use PMOS_VTL for the model name pmos in instantiation

* MANDATORY SEPARATE POWER SUPPLIES for each inverter

* inverter 1 power supply:

57

vdd1 dd1 0 {DCsupplyVoltage}

vss1 ss1 0 dc 0

ve1 sub1 0 dc 0

vpe1 well1 0 {DCsupplyVoltage}

* inverter 2 power supply:

vdd2 dd2 0 {DCsupplyVoltage}

vss2 ss2 0 dc 0

ve2 sub2 0 dc 0

vpe2 well2 0 {DCsupplyVoltage}

**

* INVERTER SUBCIRCUIT definition

* Reminder: nd ng ns nb is the usual MOSFET lead order

* drive the PMOS gate separately from the NMOS

* one input each of PUN and PDN transistors of the inverter

.subckt inverter dd ss sub well inp inn out

mn1 out inn ss sub NMOS_VTL W=0.415000U L=0.050000U

mp1 out inp dd well PMOS_VTL W=0.630000U L=0.050000U

* used W and L dimensions of INV_X1 from NCSU FreePDK 45nm

* see Christopher Torng 2019 45nm ASIC design kit for mflowgen

.ends inverter

**

58

* INSTANTIATE 2 INVERTERS

* make 2 inverter instances using the subckt inverter above

* instantiate reference inverter (no load) inverter 1:

* dd ss sub well in out

X1 dd1 ss1 sub1 well1 inPMOS inNMOS out1 inverter

* instantiate test inverter 2 (load with target capacitance):

* dd ss sub well in out

X2 dd2 ss2 sub2 well2 inPMOS inNMOS out2 inverter

**

* MEASUREMENT CONNECTIONS

* measure test capacitor of specified value TestCapacitance

* driven by test inverter X2 out2

* hang a test cap off the output of the 2nd inverter

CTEST2 out2 0 {TestCapacitance}

**

* CONTROL SECTION

.control

* syntax note: initial plus sign is extension of previous line

* to keep columns less than equal 66 for printing

* can save NMOS PMOS transistor internal model vectors

59

* if desired, see ngspice-27 manual chap 31,

* section 31.6.9 BSIM4

* for example:

* save all @m.x1.mp1[id] @m.x2.mp1[id]

*+@m.x1.mp1[ibs] @m.x2.mp1[ibs] @m.x1.mp1[ibd] @m.x2.mp1[ibd]

*+ @m.x1.mp1[isub] @m.x2.mp1[isub] @m.x1.mp1[igs] @m.x2.mp1[igs]

* run transient analysis defined outside control section

run

* make plot white background instead of default black

set color0 = white ; plot window -background color

set color1 = black ; plot window -grid and text color

* thinner grid and plot lines?

set xbrushwidth=0.5

* show "the old in out" (Clockwork Orange, Malcolm McDowell line)

plot inPMOS

+ inNMOS+$&PlotMultiVoltsSpacerForCTL

+ out1+($&PlotMultiVoltsSpacerForCTL*2)

+ out2+($&PlotMultiVoltsSpacerForCTL*3)

+ xl 0 $&testperiodSmallerForPlotctl

+ yl 0 $&DCsupplyVoltageForYLIM

+ title "CBCM measure calibration capacitor"

* plot inverter x1 in, out and currents

* this is not general code like the above,

* so you may need to manually adjust if change

* run parameters

plot vdd1#branch vss1#branch

+ inpmos*(50e-6)+200e-6 innmos*(50e-6)+300e-6

+ out1*(50e-6)+400e-6 xl 0 $&testperiodctl

+ title "CBCM apparatus run x1 ref inverter"

60

* plot inverter x2 in, out and currents

* this is not general code so you may need

* to manually adjust if change run parameters

plot vdd2#branch vss2#branch

+ inpmos*(50e-6)+200e-6 innmos*(50e-6)+300e-6

+ out2*(50e-6)+400e-6 xl 0 $&testperiodctl

+ title "CBCM apparatus run x2 test inverter (loaded)"

* measure avg vdd current in each inverter

* from t=0 to end of simulation

meas tran inv1rmsCur AVG vdd1#branch from=0 to=$&ttimectl

meas tran inv2rmsCur AVG vdd2#branch from=0 to=$&ttimectl

* use difference of two average inverter currents

* in vdd leads to measure capacitance load on one;

* formally,

* C=(input_period*abs(avg_inv1_current-avg_inv2_current)/Vdd

let capmeasured= $&testperiodctl * abs(inv2rmsCur-inv1rmsCur)/

+ $&DCsupplyVoltageForCTL

print capmeasured

echo "Actual test capacitance on 2nd inverter was "

echo $&TestCapacitancePrintable " fF"

echo "Test frequency was " $&testfreqPrintable " MHz"

echo "Input rise/fall time was " $&TriseOrFallPrintable " s"

echo "Vdd supply voltage was "

echo $&DCsupplyVoltageForCTL " volts DC"

.endc

* END CONTROL SECTION

61

* INVERTER PULSE INPUTS

* pulse both inverters’ PMOS gates with VDD voltage

VIN1 inPMOS 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWpmos} {testperiod})

* pulse both inverters’ NMOS input with VDD, but--

* want NMOS off while PMOS turns on or off, so gets

* delayed and smaller pulse width PulseWnmos

VIN2 inNMOS 0 PULSE(0 {DCsupplyVoltage} {TdelayBeginNMOS}

+ {TriseOrFall} {TriseOrFall} {PulseWnmos}

+ {testperiod})

* transient analysis

.tran ’transstepsize’ ’ttime’

**

.END

Appendix C: Revised CBCM measure discrete cap Ngspice-27 circuit code

The following is the Ngspice-27 circuit file named 20211209CBCMinvOnlyStripMohawk.cir.

It implements the CBCM method with correction for mohawk injection current (as described

in Section XI) measuring a discrete load capacitor.

62

REVISED CBCM MEAS DISCRETE C WITH INVERTER PAIR

* test a discrete capacitor with CBCM method

* two inverter CBCM charge-based capacitance measurement setup

* the 2nd inverter is the test vehicle which charges load C

* see

* Analytical Modeling and Characterization

* of Deep-Submicrometer Interconnect

* by Dennis Sylvester and Chenming Hu, PROCEEDINGS OF THE IEEE,

* VOL. 89, NO. 5, MAY 2001

* In this version, we implement Ngspice control structures

* to strip the negative current on pmos turn-off (our mohawk)

* otherwise known in the literature as negative return current

* This mohawk introduced error ~7% in the original CBCM method

* using Ngspice-27 Creation Date: Tue Dec 26 17:10:20 UTC 2017

* using BSIM4 level=54 mosfet models from process file

* /FreePDK45/ncsu_basekit/models/hspice

* /tran_models/models_nom/NMOS_VTL.inc

* in which we updated the version statement from 4.0 to 4.8

* and enabled RF high speed support

* the W and L dimensions of INV_X1

* come from NCSU FreePDK 45nm

* used by Christopher Torng 2019 for

* a 45nm ASIC design kit for mflowgen

* we use ngspice 25 degree C default circuit temperature,

* and vdd 1.10v per

* NangateOpenCellLibrary_typical

* Build Date: Thursday Feb 17 15:07 2011 library

63

* PARAMETERS for command lines,

* CSPARAMETERS for lines within control section or echos/prints

* refer to ngspice-27 manual for syntax

* Simulation time setup

* desired pulse train frequency in Hz

.param testfreq=1000e6

* printable as MHz

.csparam testfreqPrintable={testfreq/1e6}

* the period is then 1/frequency in seconds

.param testperiod=’1/testfreq’

.csparam testperiodctl={testperiod}

*.csparam testperiodSmallerForPlotctl={testperiod*0.7}

.csparam testperiodSmallerForPlotctl={testperiod*1.1}

* how many cycles at specified frequency should be analyzed

.param testcycles=’5’

* length of the simulation in seconds will be

* number of cycles times period

.param ttime=’testperiod*testcycles’

.csparam ttimectl={ttime}

* how many simulation steps desired:

.param numberOfStepsInSim=100000

* resolution is length of simulation divided by steps

.param transstepsize=’ttime/numberOfStepsInSim’

* power supply DC voltage, using

* Nangate typical corner Vdd=1.10 v, see

* NangateOpenCellLibrary_typical Build Date: Thursday Feb 17 15:07 2011

.param DCsupplyVoltage=1.10

64

* want to space multiple voltage plots clearly,

* so get ceiling of DCsupplyVoltage

.param PlotMultiVoltsSpacer=(DCsupplyVoltage+.9)

* need a csparam form to use in the control section

.csparam PlotMultiVoltsSpacerForCTL={PlotMultiVoltsSpacer}

* similarly, need DCsupplyVoltage param that works in control section

.csparam DCsupplyVoltageForCTL={DCsupplyVoltage}

* for y limit if plot n traces together, say n=4

.param numOfVoltTraces=4

.csparam DCsupplyVoltageForYLIM={PlotMultiVoltsSpacer*numOfVoltTraces}

* two-phase pulse train input stimulus parameters

* note rise/fall based on 20% of PMOS pulse width

.param RiseFallPercent=0.20

.param HalfPeriod=’(testperiod/2)’

*.param PulseWpmos=’(HalfPeriod)-(HalfPeriod*2*RiseFallPercent)’

.param PulseWpmos=’(HalfPeriod)’

.param TdelayBeginNMOS=’(HalfPeriod*RiseFallPercent*1.1)’

*.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*4*RiseFallPercent)’

.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*2.2*RiseFallPercent)’

.param TriseOrFall=’(PulseWpmos*RiseFallPercent)’

.csparam TriseOrFallPrintable={TriseOrFall*1}

* test capacitance to be measured (if make changes below)

.param TestCapacitance=1.5fF

.csparam TestCapacitancePrintable={TestCapacitance*1e15}

* BSIM4 level=54 mosfet models from

* 2006 45nm_bulk.pm process file

* which we updated the version statement from 4.0 to 4.8

65

.include modelcard.nmos

.include modelcard.pmos

* use NMOS_VTL for the model name nmos in instantiation

* use PMOS_VTL for the model name pmos in instantiation

* MANDATORY SEPARATE POWER SUPPLIES for all circuits

* inverter 1 power supply:

vdd1 dd1 0 {DCsupplyVoltage}

vss1 ss1 0 dc 0

ve1 sub1 0 dc 0

vpe1 well1 0 {DCsupplyVoltage}

* inverter 2 power supply:

vdd2 dd2 0 {DCsupplyVoltage}

vss2 ss2 0 dc 0

ve2 sub2 0 dc 0

vpe2 well2 0 {DCsupplyVoltage}

**

* INVERTER SUBCIRCUIT definition

* Reminder: nd ng ns nb is the usual MOSFET lead order

* drive the PMOS gate separately from the NMOS

* one input each of PUN and PDN transistors of the inverter

.subckt inverter dd ss sub well inp inn out

mn1 out inn ss sub NMOS_VTL W=0.415000U L=0.050000U

66

mp1 out inp dd well PMOS_VTL W=0.630000U L=0.050000U

* used W and L dimensions of INV_X1 from NCSU FreePDK 45nm

* see Christopher Torng 2019 45nm ASIC design kit for mflowgen

.ends inverter

**

* INSTANTIATE 2 INVERTERS

* make 2 inverter instances using the subckt inverter above

* instantiate reference inverter (no load) inverter 1:

* dd ss sub well in out

X1 dd1 ss1 sub1 well1 inPMOS inNMOS out1 inverter

* instantiate test inverter 2 (load with target capacitance):

* dd ss sub well in out

X2 dd2 ss2 sub2 well2 inPMOS inNMOS out2 inverter

**

* MEASUREMENT CONNECTIONS

* measure test capacitor of specified value TestCapacitance

* driven by test inverter X2 out2

* hang a test cap off the output of the 2nd inverter

CTEST2 out2 0 {TestCapacitance}

67

**

* CONTROL SECTION

.control

* syntax note: initial plus sign is extension of previous line

* to keep columns less than equal 66 for printing

* can save NMOS PMOS transistor internal model vectors

* if desired, see ngspice-27 manual chap 31,

* section 31.6.9 BSIM4

* for example:

* save all @m.x1.mp1[id] @m.x2.mp1[id]

*+@m.x1.mp1[ibs] @m.x2.mp1[ibs] @m.x1.mp1[ibd] @m.x2.mp1[ibd]

*+ @m.x1.mp1[isub] @m.x2.mp1[isub] @m.x1.mp1[igs] @m.x2.mp1[igs]

* run transient analysis defined outside control section

run

* make plot white background instead of default black

set color0 = white ; plot window -background color

set color1 = black ; plot window -grid and text color

* thinner grid and plot lines?

set xbrushwidth=0.5

* show "the old in out" (Clockwork Orange, Malcolm McDowell line)

plot inPMOS

+ inNMOS+$&PlotMultiVoltsSpacerForCTL

+ out1+($&PlotMultiVoltsSpacerForCTL*2)

+ out2+($&PlotMultiVoltsSpacerForCTL*3)

+ xl 0 $&testperiodSmallerForPlotctl

+ yl 0 $&DCsupplyVoltageForYLIM

68

+ title "CBCM meas. calibration cap, mohawk stripped"

* BEGIN SHAVE THE MOHAWK

* strip the asymmetrical negative return

*currents on pmos turn-off

* get length of vectors to process in loop

let samplelen=length(vdd1#branch)

* create copy of current vectors vdd1#branch,

* vdd2#branch to clean of negative return currents

let vd1brclean = vdd1#branch

let vd2brclean = vdd2#branch

* loop through the new current vectors and

* strip any positive current

* remembering that ngspice views negative return current

* to power supply as positive

* init loop counter and vector index

let loop = 0

* while loop counter is less than the length of

* the current vectors (begin with index 0)

* check for a positive current value and replace

* it with zero as not relevant to charging C

while loop < samplelen

if vd1brclean[loop] > 0

let vd1brclean[loop] = 0

end

69

if vd2brclean[loop] > 0

let vd2brclean[loop] = 0

end

let loop = loop + 1

end

* END SHAVE MOHAWK

* measure avg vdd current in each inverter

* from t=0 to end of simulation

* using the clean current vectors we made above:

meas tran inv1rmsCur AVG vd1brclean from=0 to=$&ttimectl

meas tran inv2rmsCur AVG vd2brclean from=0 to=$&ttimectl

* use difference of two average inverter currents

* in vdd leads to measure capacitance load on one;

* formally,

* C=(input_period*abs(avg_inv1_current-avg_inv2_current)/Vdd

let capmeasured= $&testperiodctl * abs(inv2rmsCur-inv1rmsCur)/

+ $&DCsupplyVoltageForCTL

print capmeasured

echo "(injection current or mohawk stripped prior)"

echo "Actual test capacitance on 2nd inverter was "

echo $&TestCapacitancePrintable " fF"

echo "Test frequency was " $&testfreqPrintable " MHz"

echo "Input rise/fall time was " $&TriseOrFallPrintable " s"

70

echo "Vdd supply voltage was "

echo $&DCsupplyVoltageForCTL " volts DC"

.endc

* INVERTER PULSE INPUTS

* pulse both inverters’ PMOS gates with VDD voltage

VIN1 inPMOS 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWpmos} {testperiod})

* pulse both inverters’ NMOS input with VDD, but--

* want NMOS off while PMOS turns on or off, so gets

* delayed and smaller pulse width PulseWnmos

VIN2 inNMOS 0 PULSE(0 {DCsupplyVoltage} {TdelayBeginNMOS}

+ {TriseOrFall} {TriseOrFall} {PulseWnmos}

+ {testperiod})

* transient analysis

.tran ’transstepsize’ ’ttime’

**

.END

71

Appendix D: Revised CBCM measure NAND cap Ngspice-27 circuit code

The following is the Ngspice-27 circuit file named 20211209CBCMmeasNANDStripMo-

hawk.cir. It implements the CBCM method with correction for mohawk injection current

(as described in Section XI) measuring the input A1 (labeled in1 in schematic 1) of the

NAND2 X1 circuit.

CHARGE BASED CAPACITANCE MEAS OF NAND INPUT CAP

* measure input capacitance of NAND2_X1 using CBCM method

* two inverter CBCM charge-based capacitance measurement setup

* the 2nd inverter is the test vehicle which charges load

* capacitance, i.e., the input of the NAND2_X1 gate

* see

* Analytical Modeling and Characterization

* of Deep-Submicrometer Interconnect

* by Dennis Sylvester and Chenming Hu, PROCEEDINGS OF THE IEEE,

* VOL. 89, NO. 5, MAY 2001

* In this version, we implement Ngspice control structures

* to strip the negative current on pmos turn-off (our mohawk)

* otherwise known in the literature as negative return current

* This mohawk introduced error 8.6% in the original CBCM method

* using Ngspice-27 Creation Date: Tue Dec 26 17:10:20 UTC 2017

* using BSIM4 level=54 mosfet models from process file

* /FreePDK45/ncsu_basekit/models/hspice

* /tran_models/models_nom/NMOS_VTL.inc

* in which we updated the version statement from 4.0 to 4.8

* and enabled RF high speed support

* the W and L dimensions of INV_X1 and NAND2_X1

* come from NCSU FreePDK 45nm

72

* used by Christopher Torng 2019 for

* a 45nm ASIC design kit for mflowgen

* we use ngspice 25 degree C default circuit temperature,

* and vdd 1.10v per

* NangateOpenCellLibrary_typical

* Build Date: Thursday Feb 17 15:07 2011 library

* PARAMETERS for command lines,

* CSPARAMETERS for lines within control section or echos/prints

* refer to ngspice-27 manual for syntax

* Simulation time setup

* desired pulse train frequency in Hz

.param testfreq=1000e6

* printable as MHz

.csparam testfreqPrintable={testfreq/1e6}

* the period is then 1/frequency in seconds

.param testperiod=’1/testfreq’

.csparam testperiodctl={testperiod}

*.csparam testperiodSmallerForPlotctl={testperiod*0.7}

.csparam testperiodSmallerForPlotctl={testperiod*1.1}

* how many cycles at specified frequency should be analyzed

.param testcycles=’5’

* length of the simulation in seconds will be

* number of cycles times period

.param ttime=’testperiod*testcycles’

.csparam ttimectl={ttime}

* how many simulation steps desired:

.param numberOfStepsInSim=100000

* resolution is length of simulation divided by steps

.param transstepsize=’ttime/numberOfStepsInSim’

73

* power supply DC voltage, using

* Nangate typical corner Vdd=1.10 v, see

* NangateOpenCellLibrary_typical Build Date:

* Thursday Feb 17 15:07 2011

.param DCsupplyVoltage=1.10

* want to space multiple voltage plots clearly,

* so get ceiling of DCsupplyVoltage

.param PlotMultiVoltsSpacer=(DCsupplyVoltage+.9)

* need a csparam form to use in the control section

.csparam PlotMultiVoltsSpacerForCTL={PlotMultiVoltsSpacer}

* similarly, need DCsupplyVoltage param that works in control section

.csparam DCsupplyVoltageForCTL={DCsupplyVoltage}

* for y limit if plot n traces together, say n=5

.param numOfVoltTraces=5

.csparam DCsupplyVoltageForYLIM={PlotMultiVoltsSpacer*numOfVoltTraces}

* two-phase pulse train input stimulus parameters

* note rise/fall based on 20% of PMOS pulse width

.param RiseFallPercent=0.20

.param HalfPeriod=’(testperiod/2)’

.param PulseWpmos=’(HalfPeriod)’

.param TdelayBeginNMOS=’(HalfPeriod*RiseFallPercent*1.1)’

.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*2.2*RiseFallPercent)’

.param TriseOrFall=’(PulseWpmos*RiseFallPercent)’

.csparam TriseOrFallPrintable={TriseOrFall*1}

* load capacitance for NAND output

.param NANDLoadCapacitance=59fF

.csparam NANDLoadCapacitancePrintable={NANDLoadCapacitance*1e15}

74

* BSIM4 level=54 mosfet models from

* 2006 45nm_bulk.pm process file

* which we updated the version statement from 4.0 to 4.8

.include modelcard.nmos

.include modelcard.pmos

* use NMOS_VTL for the model name nmos in instantiation

* use PMOS_VTL for the model name pmos in instantiation

* MANDATORY SEPARATE POWER SUPPLIES for all circuits

* inverter 1 power supply:

vdd1 dd1 0 {DCsupplyVoltage}

vss1 ss1 0 dc 0

ve1 sub1 0 dc 0

vpe1 well1 0 {DCsupplyVoltage}

* inverter 2 power supply:

vdd2 dd2 0 {DCsupplyVoltage}

vss2 ss2 0 dc 0

ve2 sub2 0 dc 0

vpe2 well2 0 {DCsupplyVoltage}

* target C NAND gate power supply:

vdd3 vddnand 0 {DCsupplyVoltage}

* the NAND subckt simply uses global gnd node 0

**

* INVERTER SUBCIRCUIT definition

* Reminder: nd ng ns nb is the usual MOSFET lead order

75

* drive the PMOS gate separately from the NMOS

* one input each of PUN and PDN transistors of the inverter

.subckt inverter dd ss sub well inp inn out

mn1 out inn ss sub NMOS_VTL W=0.415000U L=0.050000U

mp1 out inp dd well PMOS_VTL W=0.630000U L=0.050000U

* used W and L dimensions of INV_X1 from NCSU FreePDK 45nm

* see Christopher Torng 2019 45nm ASIC design kit for mflowgen

.ends inverter

**

* INSTANTIATE 2 INVERTERS

* make 2 inverter instances using the subckt inverter above

* instantiate reference inverter (no load) inverter 1:

* dd ss sub well in out

X1 dd1 ss1 sub1 well1 inPMOS inNMOS out1 inverter

* instantiate test inverter 2 (load with target capacitance):

* dd ss sub well in out

X2 dd2 ss2 sub2 well2 inPMOS inNMOS out2 inverter

**

76

* CREATE the NAND gate whose input gate A will be

* target capacitance loading test inverter X2 of

* CBCM inverter pair

*** SUBCIRCUIT DEFINITION

* global gnd 0 not included in parameter list

.SUBCKT NAND in1 in2 out VDD

*

* PMOS parallel PUN pair

* nd ng ns nb model

M3 out in1 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

M4 out in2 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

* NMOS series PDN pair

* nd ng ns nb model

M1 net.1 in2 0 0 NMOS_VTL W=0.415000U L=0.050000U

M2 out in1 net.1 0 NMOS_VTL W=0.415000U L=0.050000U

*

.ENDS NAND

* above we use the W and L dimensions of NAND2_X1

* from NCSU FreePDK 45nm

* from Christopher Torng 2019 45nm ASIC design kit for mflowgen

*

* INSTANTIATE a NAND gate X3 using the SUBCKT:

* in1 in2 out VDD

X3 in1 in2 out vddnand NAND

**

77

* MEASUREMENT CONNECTIONS

* measure effective capacitance of the in1 input to NAND gate

* when driven by the test vehicle inverter X2 out2

* provide low resistance path from test inverter X2 out2

* to NAND input 1 in1:

RTOTARGETC out2 in1 0.01

* tie unused NAND input in2 of NAND to vddnand,

* then a LOW to HIGH transition on inverter input

* will present LOW on in1 of NAND, causing NAND out

* to transition from LOW to HIGH, charging its load C

RX32 in2 vddnand 10k

* LOAD the NAND X3 output:

CLOAD out 0 {NANDLoadCapacitance}

**

* CONTROL SECTION

.control

* syntax note: initial plus sign is extension of previous line

* to keep columns less than equal 66 for printing

* make the PMOS M3 transistor internal BSIM4

* vectors for drain current, id, and vds

* available

save all @m.x3.m3[id] @m.x3.m3[vds]

* run transient analysis defined outside the control section

78

run

* make the plot white background instead of default black

set color0 = white ; plot window -background color

set color1 = black ; plot window -grid and text color

* thinner grid and plot lines?

set xbrushwidth=0.5

* show "the old in out" (Clockwork Orange, Malcolm McDowell line)

plot inPMOS inNMOS+$&PlotMultiVoltsSpacerForCTL

+ out1+($&PlotMultiVoltsSpacerForCTL*2)

+ out2+($&PlotMultiVoltsSpacerForCTL*3)

+ out+($&PlotMultiVoltsSpacerForCTL*4)

+ yl 0 $&DCsupplyVoltageForYLIM

+ xl 0 $&testperiodSmallerForPlotctl

+ title "CBCM measure NAND input C (strip inj current)"

* plot NAND output and in1 NAND input separately

* to examine, e.g., prop delay

plot in1 out xl 0 $&testperiodctl

* BEGIN SHAVE THE MOHAWK

* strip the asymmetrical negative return

* currents on pmos turn-off

* get length of vectors to process in loop

let samplelen=length(vdd1#branch)

* create copy of current vectors vdd1#branch,

* vdd2#branch to clean of negative return currents

let vd1brclean = vdd1#branch

let vd2brclean = vdd2#branch

79

* loop through the new current vectors and

* strip any positive current

* remembering that ngspice views negative return current

* to power supply as positive

* init loop counter and vector index

let loop = 0

* while loop counter is less than the length of

* the current vectors (begin with index 0)

* check for a positive current value and replace

* it with zero as not relevant to charging C

while loop < samplelen

if vd1brclean[loop] > 0

let vd1brclean[loop] = 0

end

if vd2brclean[loop] > 0

let vd2brclean[loop] = 0

end

let loop = loop + 1

end

* END SHAVE MOHAWK

* measure avg vdd current in each inverter

* from t=0 to end of simulation

* using the clean current vectors we made above:

80

meas tran inv1rmsCur AVG vd1brclean from=0 to=$&ttimectl

meas tran inv2rmsCur AVG vd2brclean from=0 to=$&ttimectl

* use difference of two average inverter currents

* in vdd leads to measure capacitance load on one;

* formally,

* C=(input_period*abs(avg_inv1_current-avg_inv2_current)/Vdd

let capmeasured= $&testperiodctl * abs(inv2rmsCur-inv1rmsCur)/

+ $&DCsupplyVoltageForCTL

print capmeasured

echo "(injection current or mohawk stripped prior)"

echo "(equivalent NAND input capacitance being charged"

echo " by 2nd inverter, Farads)"

echo "(Nangate typical build library suggests"

echo "NAND2_X1 A1 input is 1.599 fF)"

echo "Load capacitance on NAND output: "

echo $&NANDLoadCapacitancePrintable " fF"

echo "Test frequency was " $&testfreqPrintable " MHz"

echo "Input rise/fall time was " $&TriseOrFallPrintable " s"

echo "Vdd supply voltage was "

echo $&DCsupplyVoltageForCTL " volts DC"

.endc

* INVERTER PULSE INPUTS

81

* pulse both inverters’ PMOS gates with VDD voltage

VIN1 inPMOS 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWpmos} {testperiod})

* pulse both inverters’ NMOS input with VDD, but--

* want NMOS off while PMOS turns on or off, so gets

* delayed and smaller pulse width PulseWnmos

VIN2 inNMOS 0 PULSE(0 {DCsupplyVoltage} {TdelayBeginNMOS}

+ {TriseOrFall} {TriseOrFall} {PulseWnmos}

+ {testperiod})

* transient analysis

.tran ’transstepsize’ ’ttime’

**

.END

Appendix E: Uncorrected CBCM measure NAND cap Ngspice-27 circuit code

The following is the Ngspice-27 circuit file named 20211209CBCMmeasNAND.cir. It im-

plements the CBCM method without correction for mohawk injection current, measuring

the input A1 (labeled in1 in schematic 1) of the NAND2 X1 circuit.

CHARGE BASED CAPACITANCE MEAS OF NAND INPUT CAP

* measure input capacitance of NAND2_X1 using CBCM method

* two inverter CBCM charge-based capacitance measurement setup

* the 2nd inverter is the test vehicle which charges load

* capacitance, i.e., the input of the NAND2_X1 gate

82

* see

* Analytical Modeling and Characterization

* of Deep-Submicrometer Interconnect

* by Dennis Sylvester and Chenming Hu, PROCEEDINGS OF THE IEEE,

* VOL. 89, NO. 5, MAY 2001

* using Ngspice-27 Creation Date: Tue Dec 26 17:10:20 UTC 2017

* using BSIM4 level=54 mosfet models from process file

* /FreePDK45/ncsu_basekit/models/hspice

* /tran_models/models_nom/NMOS_VTL.inc

* in which we updated the version statement from 4.0 to 4.8

* and enabled RF high speed support

* the W and L dimensions of INV_X1 and NAND2_X1

* come from NCSU FreePDK 45nm

* used by Christopher Torng 2019 for

* a 45nm ASIC design kit for mflowgen

* we use ngspice 25 degree C default circuit temperature,

* and vdd 1.10v per

* NangateOpenCellLibrary_typical

* Build Date: Thursday Feb 17 15:07 2011 library

* PARAMETERS for command lines,

* CSPARAMETERS for lines within control section or echos/prints

* refer to ngspice-27 manual for syntax

* Simulation time setup

* desired pulse train frequency in Hz

.param testfreq=1000e6

* printable as MHz

.csparam testfreqPrintable={testfreq/1e6}

83

* the period is then 1/frequency in seconds

.param testperiod=’1/testfreq’

.csparam testperiodctl={testperiod}

*.csparam testperiodSmallerForPlotctl={testperiod*0.7}

.csparam testperiodSmallerForPlotctl={testperiod*1.1}

* how many cycles at specified frequency should be analyzed

.param testcycles=’5’

* length of the simulation in seconds will be

* number of cycles times period

.param ttime=’testperiod*testcycles’

.csparam ttimectl={ttime}

* how many simulation steps desired:

.param numberOfStepsInSim=100000

* resolution is length of simulation divided by steps

.param transstepsize=’ttime/numberOfStepsInSim’

* power supply DC voltage, using

* Nangate typical corner Vdd=1.10 v, see

* NangateOpenCellLibrary_typical Build Date:

* Thursday Feb 17 15:07 2011

.param DCsupplyVoltage=1.10

* want to space multiple voltage plots clearly,

* so get ceiling of DCsupplyVoltage

.param PlotMultiVoltsSpacer=(DCsupplyVoltage+.9)

* need a csparam form to use in the control section

.csparam PlotMultiVoltsSpacerForCTL={PlotMultiVoltsSpacer}

* similarly, need DCsupplyVoltage param that works in control section

.csparam DCsupplyVoltageForCTL={DCsupplyVoltage}

* for y limit if plot n traces together, say n=5

.param numOfVoltTraces=5

.csparam DCsupplyVoltageForYLIM={PlotMultiVoltsSpacer*numOfVoltTraces}

84

* two-phase pulse train input stimulus parameters

* note rise/fall based on 20% of PMOS pulse width

.param RiseFallPercent=0.20

.param HalfPeriod=’(testperiod/2)’

*.param PulseWpmos=’(HalfPeriod)-(HalfPeriod*2*RiseFallPercent)’

.param PulseWpmos=’(HalfPeriod)’

.param TdelayBeginNMOS=’(HalfPeriod*RiseFallPercent*1.1)’

*.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*4*RiseFallPercent)’

.param PulseWnmos=’(HalfPeriod)-(HalfPeriod*2.2*RiseFallPercent)’

.param TriseOrFall=’(PulseWpmos*RiseFallPercent)’

.csparam TriseOrFallPrintable={TriseOrFall*1}

* load capacitance for NAND output

.param NANDLoadCapacitance=59fF

.csparam NANDLoadCapacitancePrintable={NANDLoadCapacitance*1e15}

* BSIM4 level=54 mosfet models from

* 2006 45nm_bulk.pm process file

* which we updated the version statement from 4.0 to 4.8

.include modelcard.nmos

.include modelcard.pmos

* use NMOS_VTL for the model name nmos in instantiation

* use PMOS_VTL for the model name pmos in instantiation

* MANDATORY SEPARATE POWER SUPPLIES for all circuits

* inverter 1 power supply:

vdd1 dd1 0 {DCsupplyVoltage}

vss1 ss1 0 dc 0

85

ve1 sub1 0 dc 0

vpe1 well1 0 {DCsupplyVoltage}

* inverter 2 power supply:

vdd2 dd2 0 {DCsupplyVoltage}

vss2 ss2 0 dc 0

ve2 sub2 0 dc 0

vpe2 well2 0 {DCsupplyVoltage}

* target C NAND gate power supply:

vdd3 vddnand 0 {DCsupplyVoltage}

* the NAND subckt simply uses global gnd node 0

**

* INVERTER SUBCIRCUIT definition

* Reminder: nd ng ns nb is the usual MOSFET lead order

* drive the PMOS gate separately from the NMOS

* one input each of PUN and PDN transistors of the inverter

.subckt inverter dd ss sub well inp inn out

mn1 out inn ss sub NMOS_VTL W=0.415000U L=0.050000U

mp1 out inp dd well PMOS_VTL W=0.630000U L=0.050000U

* used W and L dimensions of INV_X1 from NCSU FreePDK 45nm

* see Christopher Torng 2019 45nm ASIC design kit for mflowgen

.ends inverter

**

86

* INSTANTIATE 2 INVERTERS

* make 2 inverter instances using the subckt inverter above

* instantiate reference inverter (no load) inverter 1:

* dd ss sub well in out

X1 dd1 ss1 sub1 well1 inPMOS inNMOS out1 inverter

* instantiate test inverter 2 (load with target capacitance):

* dd ss sub well in out

X2 dd2 ss2 sub2 well2 inPMOS inNMOS out2 inverter

**

* CREATE the NAND gate whose input gate A will be

* target capacitance loading test inverter X2 of

* CBCM inverter pair

*** SUBCIRCUIT DEFINITION

* global gnd 0 not included in parameter list

.SUBCKT NAND in1 in2 out VDD

*

* PMOS parallel PUN pair

* nd ng ns nb model

M3 out in1 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

M4 out in2 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

* NMOS series PDN pair

* nd ng ns nb model

M1 net.1 in2 0 0 NMOS_VTL W=0.415000U L=0.050000U

87

M2 out in1 net.1 0 NMOS_VTL W=0.415000U L=0.050000U

*

.ENDS NAND

* above we use the W and L dimensions of NAND2_X1

* from NCSU FreePDK 45nm

* from Christopher Torng 2019 45nm ASIC design kit for mflowgen

*

* INSTANTIATE a NAND gate X3 using the SUBCKT:

* in1 in2 out VDD

X3 in1 in2 out vddnand NAND

**

* MEASUREMENT CONNECTIONS

* measure effective capacitance of the in1 input to NAND gate

* when driven by the test vehicle inverter X2 out2

* provide low resistance path from test inverter X2 out2

* to NAND input 1 in1:

RTOTARGETC out2 in1 0.01

* tie unused NAND input in2 of NAND to vddnand,

* then a LOW to HIGH transition on inverter input

* will present LOW on in1 of NAND, causing NAND out

* to transition from LOW to HIGH, charging its load C

RX32 in2 vddnand 10k

* LOAD the NAND X3 output:

88

CLOAD out 0 {NANDLoadCapacitance}

**

* CONTROL SECTION

.control

* syntax note: initial plus sign is extension of previous line

* to keep columns less than equal 66 for printing

* run transient analysis defined outside the control section

run

* make the plot white background instead of default black

set color0 = white ; plot window -background color

set color1 = black ; plot window -grid and text color

* thinner grid and plot lines?

set xbrushwidth=0.5

* show "the old in out" (Clockwork Orange, Malcolm McDowell line)

plot inPMOS inNMOS+$&PlotMultiVoltsSpacerForCTL

+ out1+($&PlotMultiVoltsSpacerForCTL*2)

+ out2+($&PlotMultiVoltsSpacerForCTL*3)

+ out+($&PlotMultiVoltsSpacerForCTL*4)

+ yl 0 $&DCsupplyVoltageForYLIM xl 0 $&testperiodSmallerForPlotctl

+ title "CBCM measure NAND input C"

* plot NAND output and in1 NAND input separately

* to examine, e.g., prop delay

plot in1 out xl 0 $&testperiodctl

* measure avg vdd current in each inverter

* from t=0 to end of simulation

89

meas tran inv1rmsCur AVG vdd1#branch from=0 to=$&ttimectl

meas tran inv2rmsCur AVG vdd2#branch from=0 to=$&ttimectl

* use difference of two average inverter currents

* in vdd leads to measure capacitance load on one;

* formally,

* C=(input_period*abs(avg_inv1_current-avg_inv2_current)/Vdd

let capmeasured= $&testperiodctl * abs(inv2rmsCur-inv1rmsCur)/

+ $&DCsupplyVoltageForCTL

print capmeasured

echo "(equivalent NAND input capacitance being charged"

echo " by 2nd inverter, Farads)"

echo "(Nangate typical build library suggests"

echo "NAND2_X1 A1 input is 1.599 fF)"

echo "Load capacitance on NAND output: "

echo $&NANDLoadCapacitancePrintable " fF"

echo "Test frequency was " $&testfreqPrintable " MHz"

echo "Input rise/fall time was " $&TriseOrFallPrintable " s"

echo "Vdd supply voltage was "

echo $&DCsupplyVoltageForCTL " volts DC"

.endc

* INVERTER PULSE INPUTS

* pulse both inverters’ PMOS gates with VDD voltage

90

VIN1 inPMOS 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWpmos} {testperiod})

* pulse both inverters’ NMOS input with VDD, but--

* want NMOS off while PMOS turns on or off, so gets

* delayed and smaller pulse width PulseWnmos

VIN2 inNMOS 0 PULSE(0 {DCsupplyVoltage} {TdelayBeginNMOS}

+ {TriseOrFall} {TriseOrFall} {PulseWnmos}

+ {testperiod})

* transient analysis

.tran ’transstepsize’ ’ttime’

**

.END

Appendix F: Manually measure input capacitance, circuit file

The following is the Ngspice-27 circuit file named 20211211simpleCapMeasNANDin.cir. It

measures the effective capacitance of input A1 (labeled in1 in schematic 1) of the NAND2 X1

circuit using the charge delivered to the gate (see Eq. 2 in Section V)

SIMPLE CAPACITANCE MEAS OF NAND INPUT CAP

* a less sophisticated simple input capacitance

* driving gate with voltage pulse

* and calculating charge delivered

* meas capacitance of NAND2_X1 gate input 1

91

* using Ngspice-27 Creation Date: Tue Dec 26 17:10:20 UTC 2017

* using BSIM4 level=54 mosfet models from process file

* /FreePDK45/ncsu_basekit/models/hspice

* /tran_models/models_nom/NMOS_VTL.inc

* in which we updated the version statement from 4.0 to 4.8

* and enabled RF high speed support

* the W and L dimensions of INV_X1 and NAND2_X1

* come from NCSU FreePDK 45nm

* used by Christopher Torng 2019 for

* a 45nm ASIC design kit for mflowgen

* we use ngspice 25 degree C default circuit temperature,

* and vdd 1.10v per

* NangateOpenCellLibrary_typical

* Build Date: Thursday Feb 17 15:07 2011 library

* PARAMETERS for command lines,

* CSPARAMETERS for lines within control section or echos/prints

* refer to ngspice-27 manual for syntax

* Simulation time setup

* desired pulse train frequency in Hz

.param testfreq=1000e6

* printable as MHz

.csparam testfreqPrintable={testfreq/1e6}

* the period is then 1/frequency in seconds

.param testperiod=’1/testfreq’

.csparam testperiodctl={testperiod}

.csparam testperiodctl2={testperiod*2}

*.csparam testperiodSmallerForPlotctl={testperiod*0.7}

92

.csparam testperiodSmallerForPlotctl={testperiod*1.1}

* how many cycles at specified frequency should be analyzed

.param testcycles=’5’

* length of the simulation in seconds will be

* number of cycles times period

.param ttime=’testperiod*testcycles’

.csparam ttimectl={ttime}

* how many simulation steps desired:

.param numberOfStepsInSim=100000

* resolution is length of simulation divided by steps

.param transstepsize=’ttime/numberOfStepsInSim’

* power supply DC voltage, using

* Nangate typical corner Vdd=1.10 v, see

* NangateOpenCellLibrary_typical Build Date:

* Thursday Feb 17 15:07 2011

.param DCsupplyVoltage=1.10

* want to space multiple voltage plots clearly,

* so get ceiling of DCsupplyVoltage

.param PlotMultiVoltsSpacer=(DCsupplyVoltage+.9)

* need a csparam form to use in the control section

.csparam PlotMultiVoltsSpacerForCTL={PlotMultiVoltsSpacer}

* similarly, need DCsupplyVoltage param that works in control section

.csparam DCsupplyVoltageForCTL={DCsupplyVoltage}

* for y limit if plot n traces together, say n=5

.param numOfVoltTraces=5

.csparam DCsupplyVoltageForYLIM={PlotMultiVoltsSpacer*numOfVoltTraces}

* pulse train input stimulus parameters

* note rise/fall based on 20% pulse width

.param RiseFallPercent=0.20

93

.param HalfPeriod=’(testperiod/2)’

.param PulseWidth=’(HalfPeriod)’

.param TriseOrFall=’(PulseWidth*RiseFallPercent)’

.csparam TriseOrFallPrintable={TriseOrFall*1}

* load capacitance for NAND output

.param NANDLoadCapacitance=59fF

.csparam NANDLoadCapacitancePrintable={NANDLoadCapacitance*1e15}

* BSIM4 level=54 mosfet models from

* 2006 45nm_bulk.pm process file

* which we updated the version statement from 4.0 to 4.8

.include modelcard.nmos

.include modelcard.pmos

* use NMOS_VTL for the model name nmos in instantiation

* use PMOS_VTL for the model name pmos in instantiation

* POWER SUPPLY

* NAND gate power supply:

vdd3 vddnand 0 {DCsupplyVoltage}

* the NAND subckt simply uses global gnd node 0

* CREATE the NAND gate whose input gate A will be

* target capacitance

94

*** SUBCIRCUIT DEFINITION

* global gnd 0 not included in parameter list

.SUBCKT NAND in1 in2 out VDD

*

* PMOS parallel PUN pair

* nd ng ns nb model

M3 out in1 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

M4 out in2 vdd vdd PMOS_VTL W=0.630000U L=0.050000U

* NMOS series PDN pair

* nd ng ns nb model

M1 net.1 in2 0 0 NMOS_VTL W=0.415000U L=0.050000U

M2 out in1 net.1 0 NMOS_VTL W=0.415000U L=0.050000U

*

.ENDS NAND

* above we use the W and L dimensions of NAND2_X1

* from NCSU FreePDK 45nm

* from Christopher Torng 2019 45nm ASIC design kit for mflowgen

*

* INSTANTIATE a NAND gate X3 using the SUBCKT:

* in1 in2 out VDD

X3 in1 in2 out vddnand NAND

**

* MEASUREMENT CONNECTIONS

* measure effective capacitance of the in1 input to NAND gate

* when driven voltage pulse train

95

* provide low resistance path

* to NAND input 1 in1 from pulse

* source, use approx. CMOS output R

* as voltage pulse source resistance

RTOTARGETC PulseInput in1 1000

* tie unused NAND input in2 of NAND to vddnand

RX32 in2 vddnand 10k

* LOAD the NAND X3 output:

CLOAD out 0 {NANDLoadCapacitance}

**

* CONTROL SECTION

.control

* syntax note: initial plus sign is extension of previous line

* to keep columns less than equal 66 for printing

* run transient analysis defined outside the control section

run

* make the plot white background instead of default black

set color0 = white ; plot window -background color

set color1 = black ; plot window -grid and text color

* thinner grid and plot lines?

set xbrushwidth=0.5

* plot 2 cycles NAND output and in1 NAND input

plot in1 out xl 0 $&testperiodctl2

+ title "NAND input (in1, in2 at VDD) and output, 2 cycles"

96

* measure input capacitance of the NAND:

let rcurrent = ((pulseinput - in1) / @rtotargetc[resistance])

echo "charge transferred to NAND input: (Coulombs)"

meas tran incurlh INTEG rcurrent from=0 to=$&TriseOrFallPrintable

echo "voltage change on NAND input: (Volts)"

meas tran maxin1 MAX in1 from=0 to=$&TriseOrFallPrintable

echo ""

echo "capacitance of NAND input measured, fF:"

let NANDincap = (incurlh / maxin1)*1e15

print NANDincap

echo ""

settype current rcurrent

plot rcurrent xl 0 $&TriseOrFallPrintable

+ title "NAND in1 current L to H"

plot in1 xl 0 $&TriseOrFallPrintable

+ title "NAND in1 gate voltage L to H"

echo "(Nangate typical build library suggests"

echo "NAND2_X1 A1 input is 1.599 fF)"

echo ""

echo "Load capacitance on NAND output: "

echo $&NANDLoadCapacitancePrintable " fF"

echo ""

echo "Test frequency was " $&testfreqPrintable " MHz"

echo "Input rise/fall time was " $&TriseOrFallPrintable " s"

echo "pulse source output impedance: (ohms)"

print @RTOTARGETC[resistance]

echo "Vdd supply voltage was "

97

echo $&DCsupplyVoltageForCTL " volts DC"

.endc

* PULSE DRIVE of NAND input 1

VIN1 PulseInput 0 PULSE(0 {DCsupplyVoltage}

+ 0 {TriseOrFall} {TriseOrFall} {PulseWidth} {testperiod})

* transient analysis

.tran ’transstepsize’ ’ttime’

**

.END

Appendix G: BSIM4 NMOS model card

The following is the BSIM4 NMOS model card used in the Ngspice circuits:

* Customized PTM 45 NMOS nom

* gdb: changed BSIM4 model to ngspice-27 latest version 4.8

* original file:

* /baiken-files/FreePDK45/ncsu_basekit/models/

* hspice/tran_models/models_nom/NMOS_VTL.inc

* also turn on RF high speed support:

* rgatemod=1 is not IIR, so leave on while turn on trnqsmod

* change trnqsmod=0 to trnqsmod=1; leave rbodymod= 1 alone,

* since it is appropriate * for high-speed sim

* and not incompatible with transient NQS

98

.model NMOS_VTL nmos level = 54

* parameters related to the technology node

+tnom = 27 epsrox = 3.9

+eta0 = 0.006 nfactor = 2.1 wint = 5e-09

+cgso = 1.1e-10 cgdo = 1.1e-10 xl = -2e-08

* parameters customized by the user

+toxe = 1.14e-09 toxp = 1e-09 toxm = 1.14e-09 toxref = 1.14e-09

+dtox = 0.14e-09 lint = 3.75e-09

+vth0 = 0.322 k1 = 0.4 u0 = 0.045 vsat = 148000

+rdsw = 155 ndep = 3.4e+18 xj = 1.98e-08

+version = 4.8 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 1

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0

+k2 = 0 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = 0 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-010

+dvtp1 = 0.1 lpe0 = 0 lpeb = 0

+ngate = 3e+20 nsd = 2e+020 phin = 0

+cdsc = 0 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.13 etab = 0

+vfb = -0.55 ua = 6e-010 ub = 1.2e-018

99

+uc = 0 a0 = 1 ags = 0

+a1 = 0 a2 = 1 b0 = 0 b1 = 0

+keta = 0.04 dwg = 0 dwb = 0 pclm = 0.02

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = -0.005 drout = 0.5

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 1e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2300000

+rsh = 5 rsw = 80 rdw = 80

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0

+prwb = 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.02 bigc = 0.0027

+cigc = 0.002 aigsd = 0.02 bigsd = 0.0027 cigsd = 0.002

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgbo = 2.56e-011 cgdl = 2.653e-010

+cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

100

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0

+dwj = 0 xgw = 0 xgl = 0

+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

Appendix H: BSIM4 PMOS model card

The following is the BSIM4 PMOS model card used in the Ngspice circuits:

* Customized PTM 45 PMOS

* gdb: changed BSIM4 model to ngspice-27 latest version 4.8

* original file:

* /baiken-files/FreePDK45/ncsu_basekit/models/

* hspice/tran_models/models_nom/PMOS_VTL.inc

* also turn on RF high speed support:

* rgatemod=1 is not IIR, so leave on while turn on trnqsmod

* change trnqsmod=0 to trnqsmod=1; leave rbodymod= 1 alone,

* since it is appropriate * for high-speed sim

* and not incompatible with transient NQS

.model PMOS_VTL pmos level = 54

* parameter customized by user

+vth0 = -0.3021 toxref = 1.26e-009 vsat = 69000

101

+toxe = 1.26e-009 toxp = 1.0e-009 toxm = 1.26e-009

+dtox = 2.6e-010 epsrox = 3.9 wint = 5e-009 lint = 3.75e-009

+version = 4.8 binunit = 1 paramchk= 1 mobmod = 0

+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1

+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1

+permod = 1 acnqsmod= 0 trnqsmod= 1

+tnom = 27

+ll = 0 wl = 0 lln = 1 wln = 1

+lw = 0 ww = 0 lwn = 1 wwn = 1

+lwl = 0 wwl = 0 xpart = 0 toxref = 1.3e-009

+xl = -20e-9

+k1 = 0.4 k2 = -0.01 k3 = 0

+k3b = 0 w0 = 2.5e-006 dvt0 = 1 dvt1 = 2

+dvt2 = -0.032 dvt0w = 0 dvt1w = 0 dvt2w = 0

+dsub = 0.1 minv = 0.05 voffl = 0 dvtp0 = 1e-011

+dvtp1 = 0.05 lpe0 = 0 lpeb = 0 xj = 1.98e-008

+ngate = 2e+020 ndep = 2.44e+018 nsd = 2e+020 phin = 0

+cdsc = 0 cdscb = 0 cdscd = 0 cit = 0

+voff = -0.126 nfactor = 2.22 eta0 = 0.0055 etab = 0

+vfb = 0.55 u0 = 0.02 ua = 2e-009 ub = 5e-019

+uc = 0 a0 = 1 ags = 1e-020

+a1 = 0 a2 = 1 b0 = 0 b1 = 0

+keta = -0.047 dwg = 0 dwb = 0 pclm = 0.12

+pdiblc1 = 0.001 pdiblc2 = 0.001 pdiblcb = 3.4e-008 drout = 0.56

+pvag = 1e-020 delta = 0.01 pscbe1 = 8.14e+008 pscbe2 = 9.58e-007

+fprout = 0.2 pdits = 0.08 pditsd = 0.23 pditsl = 2300000

+rsh = 5 rdsw = 155 rsw = 75 rdw = 75

+rdswmin = 0 rdwmin = 0 rswmin = 0 prwg = 0

102

+prwb = 0 wr = 1 alpha0 = 0.074 alpha1 = 0.005

+beta0 = 30 agidl = 0.0002 bgidl = 2.1e+009 cgidl = 0.0002

+egidl = 0.8 aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002

+nigbacc = 1 aigbinv = 0.014 bigbinv = 0.004 cigbinv = 0.004

+eigbinv = 1.1 nigbinv = 3 aigc = 0.010687 bigc = 0.0012607

+cigc = 0.0008 aigsd = 0.010687 bigsd = 0.0012607 cigsd = 0.0008

+nigc = 1 poxedge = 1 pigcd = 1 ntox = 1

+xrcrg1 = 12 xrcrg2 = 5

+cgso = 1.1e-010 cgdo = 1.1e-010 cgbo = 2.56e-011 cgdl = 2.653e-010

+cgsl = 2.653e-010 ckappas = 0.03 ckappad = 0.03 acde = 1

+moin = 15 noff = 0.9 voffcv = 0.02

+kt1 = -0.11 kt1l = 0 kt2 = 0.022 ute = -1.5

+ua1 = 4.31e-009 ub1 = 7.61e-018 uc1 = -5.6e-011 prt = 0

+at = 33000

+fnoimod = 1 tnoimod = 0

+jss = 0.0001 jsws = 1e-011 jswgs = 1e-010 njs = 1

+ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xjbvs = 1

+jsd = 0.0001 jswd = 1e-011 jswgd = 1e-010 njd = 1

+ijthdfwd= 0.01 ijthdrev= 0.001 bvd = 10 xjbvd = 1

+pbs = 1 cjs = 0.0005 mjs = 0.5 pbsws = 1

+cjsws = 5e-010 mjsws = 0.33 pbswgs = 1 cjswgs = 3e-010

+mjswgs = 0.33 pbd = 1 cjd = 0.0005 mjd = 0.5

+pbswd = 1 cjswd = 5e-010 mjswd = 0.33 pbswgd = 1

+cjswgd = 5e-010 mjswgd = 0.33 tpb = 0.005 tcj = 0.001

+tpbsw = 0.005 tcjsw = 0.001 tpbswg = 0.005 tcjswg = 0.001

+xtis = 3 xtid = 3

+dmcg = 0 dmci = 0 dmdg = 0 dmcgt = 0

103

+dwj = 0 xgw = 0 xgl = 0

+rshg = 0.4 gbmin = 1e-010 rbpb = 5 rbpd = 15

+rbps = 15 rbdb = 15 rbsb = 15 ngcon = 1

Appendix I: Some recommended texts for MOSFET/CMOS theory

If you want to refresh yourself on the theory and operation of MOSFETs, Steck’s textbook

covering fundamental analog and digital electronics (covers general semiconductor junctions

in Diode and FET/MOSFET characteristics in the analog section and CMOS specifically

in the digital section) is freely available at[4]. B. Van Zeghbroeck at University of Colorado

has a nice set of lectures on MOS field-effect transistors up as web pages.[52] The textbook

by Ytterdal, Cheng and Fjeldly[45] has an excellent treatment of MOSFETs and modeling,

in particular Chapter 1 MOSFET Device Physics and Operation. If you want to get a better

understanding of semiconductor physics of the MOSFET at the graduate level (excellent

presentation of energy bands), but with about as many diagrams as equations (happily),

Professor Jesús del Alamo has his Integrated Microelectronic Devices [34] lecture notes freely

available online at MIT.

For an integrated circuits view, the1999 Berkeley text, “Digital Integrated Circuits A De-

sign Perspective,” is very good. Portions of the first edition are downloadable at Berkeley.[6]

The updated second edition can be purchased (Prentice Hall, 2006). For a readable, but

highly technical at times, account of the development of the MOSFET by one of the partic-

ipants from 1955 through 1986 (the date the paper was submitted), see[5].

For coverage of CMOS layout, see Kim’s online lecture slides[7] at the School of Electrical

Engineering and Computer Science, Washington State University or Andrew Mason’s online

lectures at Michigan State University College of Engineering.[21] For a detailed tutorial using

Synopsys and Cadence automatic synthesis of integrated circuit (ASIC) tools, the online files

of the Cornell University course ECE 5745 are recommended.[15]

104

FIG. 12. The Ngspice Vdd charging current for the reference inverter (no load, i.e., simply intrinsic

capacitance charged) in a CBCM pair is shown in upper plot (negative-going spike at t = 0.6 ns,

units µA. The lower part of the figure shows the input voltage waveforms to the PMOS and NMOS

transistors of the inverters. The PMOS begins to turn on when inpmos (red) begins to drop at

t = 0.6 ns (after the NMOS transistor has already turned off, blue trace inmos).

105

FIG. 13. Propagation of NAND2 X1 input in1 falling to output out rising, charging CL = 59 fF.

Test frequency 1 GHz.

FIG. 14. The MOSFET “parasitic capacitances,” include overlap capacitances between the gate

electrode and the highly doped source and drain regions (Cos and Cod), junction capacitances Cjs

and Cjd between substrate and source and drain regions. These are classified within the extrinsic

part of the four-terminal MOSFET model.[46] The intrinsic portion of models (within the dotted

line box in the figure) contains the channel mobile inversion charge and the depletion charge.

106

FIG. 15. A depiction of a MOSFET capacitance model with definition of composite terms. CSB

and CDB denote the capacitive components contributed by the reverse-biased source-body and

drain-body pn-junctions. Because these component are also referred to commonly as diffusion

capacitance (though the doping may have been implanted by ion beam rather than diffusion), they

may be labeled CSdiff and CDdiff at times ([6]).

FIG. 16. Shown is an equivalent circuit for MOSFET transient analysis.[47]

107

FIG. 17. MOSFET intrinsic four-terminal transcapacitances.[47]

FIG. 18. MOSFET intrinsic large-signal equivalent circuit based on the Ward–Dutton charge-based

nonreciprocal capacitances is shown.[45]

108

FIG. 19. MOSFET large-signal equivalent circuit.[46]

FIG. 20. PMOS gate voltage rises at t = 1 ns during the simulation, beginning turnoff of the

transistor.

109

FIG. 21. PMOS gate voltage rises at t = 1 ns during the simulation, beginning turnoff of the

transistor. The figure plots (for both inverter x1 and inverter x2, the latter loaded with 1.5 fF)

the internal intrinsic core capacitance variables css (capacitance at internal source terminal), cdd

(capacitance at internal drain terminal), and cgg (capacitance at internal gate terminal) (refer to

Figure 17 and Figure 18 for depictions of these terminals). The values plotted are the partial

derivatives ∂Qi/∂Vj | i = j ∈ {g, s, d} along the diagonal of the Ward-Dutton matrix in Eq. A4

at the simulation time steps noted along the x-axis. The vertical scale is aF (10−18 F). The

two inverters display almost identical capacitances here, so only one trace color may be visible if

superimposed over the equivalent from the paired inverter.

110

FIG. 22. PMOS gate voltage rises at t = 1 ns during the simulation, beginning turnoff of the

transistor. The figure plots the internal intrinsic core capacitance variable cbb (capacitance at

internal body terminal, superimposed faint and darker violet lowest trace in the plot below 100 aF,

with slight change between 1.05 and 1.10 ns) and the extrinsic source-body and drain-body junction

diode capacitances, capbs and capbd. Though largely constant, capbd begins to drop some time

after PMOS turnoff completed at t = 1.10 ns and we see a divergence between loaded inverter x2

in red, delayed drop, and unloaded inverter x1 in blue, immediate drop.

111

FIG. 23. BSIM4 internal charge variable behavior at PMOS turnoff t = 1 ns to t = 1.1 ns for the

x1 inverter is shown. Notice that the channel charge qinv (blue trace) reflects the sum of drain qd

and qs source channel charge (red trace) and that the gate charge qg (gold) can be seen to decrease

as the sum of charge lost from qd, qs and qb.

112

[1] Dennis Sylvester and Chenming Hu, “Analytical Modeling and Characterization of Deep-

Submicrometer Interconnect,” PROCEEDINGS OF THE IEEE 89 (2001).

[2] Darsen Lu, “Compact Models for Future Generation CMOS,” (2011), dissertation for PhD

by Darsen Lu, Electrical Engineering and Computer Sciences, University of California at

Berkeley, Technical Report No. UCB/EECS-2011-69. Chapter 3.

[3] “BSIM research group,” Department of Electrical Engineering and Computer Sciences at the

University of California, Berkeley, MOSFET SPICE models for circuit simulation and CMOS

technology development.

[4] Daniel A. Steck, “Analog and Digital Electronics,” (2021), Author is a physicist and professor

at University of Oregon who wrote this textbook covering the fundamentals of analog and

digital electronics for the senior physics undergraduate student. It is freely avalable in pdf at

the link given.

[5] Chi-Tang Sah, “Evolution of the MOS Transistor–From Conception to VLSI,” Proceedings of

the IEEE 76 (1988), IEEE invited Sah, who was hired by Shockley when he left Bell Labs to

form his own transistor manufacturing company in 1955 at Palo Alto, along with Noyce and

Moore (who later started Intel), among others, to write about the historical development of

the MOSFET up to 1986.

[6] “Digital integrated circuits a design perspective,” (1999), draft of the first edition available

in class notes for 2001 Berkeley course by Professor Borivoje Nikolic (one of the authors of

the book). Intended for use in a senior/graduate level digital circuit design class, but also as a

reference for professional engineers, the second edition is available for purchase, Prentice Hall,

2006.

[7] Dae Hyun Kim , “Physical Design of CMOS Integrated Circuits,” 2017 EE434 lecture

slides, School of Electrical Engineering and Computer Science, Washington State University,

eecs.wsu.edu.

[8] Monzural Islam Dewan and Dae Hyun Kim, “NP-Separate: A New VLSI Design Methodology

for Area, Power, and Performance Optimization,” IEEE TRANSACTIONS ON COMPUTER-

AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 39 (2020).

[9] Paul Acorn, “Intel Process Roadmap Through 2025: Renamed Process Nodes, Angstrom Era

113

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-69.html
http://bsim.berkeley.edu/
http://steck.us/teaching
http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f01/notes.html
https://eecs.wsu.edu/~ee434/Handouts/04-Physical_Design.pdf
https://www.tomshardware.com/news/intel-process-packaging-roadmap-2025

Begins,” Tom’s Hardware story discussing Intel CEO July 2021 announcement of roadmap to

2025 for the company.

[10] “New generation of PTM for bulk CMOS,” 2006 Predictive Technology Model BSIM4 SPICE

file for 45nm bulk CMOS.

[11] “45nm ASIC design kit for mflowgen, a modular ASIC/FPGA flow generator,” (2019), We

obtained portions of the FreePDK45 and the NanGate Open Cell Library files that were

assembled into an ASIC design kit for mflowgen by Christopher Torng in 2019.

[12] “FreePDK45 Manual,” Manual introduces the NCSU TechLib FreePDK45 technology library

intended to work with the 45nm BSIM4 Predictive Technology Model from Arizona State

University.

[13] “Predictive Technology Model (PTM) website (Arizona State University.),” PTM provides

accurate, customizable, and predictive model files for future transistor and interconnect tech-

nologies. These predictive model files are compatible with standard circuit simulators, such

as SPICE, and scalable with a wide range of process variations. With PTM, competitive cir-

cuit design and research can start even before the advanced semiconductor technology is fully

developed..

[14] “Silicon Integration Initiative, Inc. ,” “Silvaco’s Open-Cell 15nm and 45nm FreePDK Libraries

have been made available to Universities and Si2 Members at no charge.”.

[15] Christopher Batten, “ECE 5745 Tutorial 5: Synopsys/Cadence ASIC Tools,” (2021), Tutorial

discussing how to use Synopsys and Cadence automatic synthesis of integrated circuit tools

to map a register transfer language design at gate level down to standard cells and ultimately

silicon. For ECE 5745 course at Cornell University.

[16] “FreePDK45 V1.4 Process Development Kit,” Copy of FreePDK45 V1.4 Process Development

Kit for the 45 nm technology made available by Github user baichen318.

[17] “The LayoutEditor,” This commercial LayoutEditor by ”juspertor GmbH” evolved from the

2004 Open Source project. They offer a free version for experimentation, which we have used

briefly to get the lay of the land as it were in regard to the layout of integrated circuits. We

found it quite difficult to use, possibly because of the seemingly haphazard limitations of the

free version (functional and in regard to which necessary data files were omitted)..

[18] “Ngspice Users Manual Version 27,” Use the manual for the ngspice-27 software release. It

will be the ngspice.pdf.gz document in the compressed package for documents related to this

114

https://www.tomshardware.com/news/intel-process-packaging-roadmap-2025
http://ptm.asu.edu/modelcard/2006/45nm_bulk.pm
https://github.com/cornell-brg/mflowgen
https://www.eda.ncsu.edu/wiki/FreePDK45:Manual
http://ptm.asu.edu/introduction.html
https://si2.org/
https://cornell-ece5745.github.io/ece5745-tut5-asic-tools/
https://github.com/baichen318/FreePDK45
https://layouteditor.com
http://sourceforge.net/projects/ngspice

older release.

[19] Donald O. Pederson, “A Historical Review of Circuit Simulation,” IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEM CAS-31 (1984).

[20] “gschem Schematic Editor,” gEDA project has produced and continues working on a full

GPL’d suite and toolkit of Electronic Design Automation tools. The link here is for a Debian

(Linux) package of the gschem portion of gEDA. It appears that gEDA development has

slowed or ceased, but the schematic editor is useful for the Linux environment.

[21] “ECE 410 CMOS technology lecture slides ,” 2007 ECE 410 lecture slides by Prof. Andrew

Mason at Michigan State University College of Engineering..

[22] William H. Hayt and John A. Buck, Engineering Electromagnetics, eighth ed. (McGraw-Hill

Companies, Inc., New York, 2012).

[23] Ivan E. Sutherland and Robert F. Sproull, “Logical Effort: Designing for Speed on the Back

of an Envelope,” (1991), Sutherland and Sproull, of Sun Microsystems, presented this paper

at Advanced Research in VLSI 1991 University of California at Santa Cruz.

[24] “EDA NC State University,” Electronic Design Automation classes and technology support

at North Carolina State University.

[25] Steve C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. (Artech House,

Inc., Norwood, MA, 2006) Section 4.4.2 Nonlinear capacitors–characterization and analysis in

particular.

[26] J. C. Chen et al, “An on-chip, atto-farad interconnect charge-based capacitance measurement

(CBCM) technique,” PROCEEDINGS OF THE IEDM , 69–72 (1996).

[27] “Implications of Slow or Floating CMOS Inputs,” Texas Instruments Applications Report

SCBA004E – JULY 1994 – REVISED JULY 2021, Section 1: Characteristics of Slow or

Floating CMOS Inputss.

[28] “Little Logic Data Book,” (2001), Glossary of symbols, terms and definitions in Texas In-

struments design reference for their small size logic devices..

[29] Lin Chao et al, “Intel’s 45nm CMOS Technology,” Intel Technology Journal 12 (2008),

DOI:10.1535/itj.1202.

[30] “Understanding and Interpreting Standard-Logic Data Sheets,” (2016), Texas Instruments

Applications Report SZZA036C – December 2002– Revised June 2016, Section 4.9.2 Proga-

gation Delay Time.

115

https://pkgs.org/download/geda-gschem
https://www.egr.msu.edu/classes/ece410/mason/files/
http://www.eda.ncsu.edu/wiki/FreePDK

[31] Hank Zumbahlen, ed., in Basic Linear Design (Analog Devices, Inc., Norwood, MA, U.S.A,

2007) Chap. 1, pp. 76–78, Sections 1.64, 1.65.

[32] Eugene P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences,”

Communications on Pure and Applied Mathematics XIII (1960), Lecture delivered at New

York University May 11, 1959 by Wigner (who received a Nobel Prize in Physics 1963 “for his

contributions to the theory of the atomic nucleus and the elementary particles, particularly

through the discovery and application of fundamental symmetry principles.”.

[33] “Introduction to Electronics,” (1999), Written by retired Prof. Bob Zulinski, Dept. Electrical

Engineering, Michigan Technological University, Houghton MI. Apparently no longer available

at MTU, but found a copy at the website of Petter Braeken, an engineer and educator in

Norway at http://brakken.no/el2/dokumenter/elint200.pdf.

[34] “Integrated Microelectronic Devices,” (2007), Massachusetts Institute of Technology Open-

CourseWare Spring 2007 graduate course by Prof. Jesús del Alamo covering the physics of

microelectronic semiconductor devices for silicon integrated circuit applications. MIT Course

Number 6.720J if url changes in future..

[35] “BSIM4 4.8.1 MOSFET Model,” (2017), department of Electrical Engineering and Computer

Sciences at the University of California, Berkeley, MOSFET SPICE models for circuit simu-

lation and CMOS technology development. The url may change without warning, so you may

have to search within the bsim.berkeley.edu or berkeley.edu domain to find a pertinent manual

or source code.

[36] “CMOSedu.com,” This is the personal website of R. Jacob Baker, associated with Department

of Electrical and Computer Engineering, Boise State University. He is a CMOS circuit guru

with several books published (see cmosedu.com for titles and information). Link is to discussion

of variation of gm and fT with overdrive voltage..

[37] Jensen et al , U.S. Patent No. 6,781,434 B2 (24 Aug. 2004), describes a method to cancel the

charge dump spikes on the source and drain of switching MOSFET transistors due to charging

and discharging of overlap capacitances between gate and drain, gate and source within the

devices.

[38] Fan et al , U.S. Patent No. 6,404,222 B1 (11 Jun. 2002), describes a method to limit mea-

surement error due to the return of different size negative currents when using the CBCM

charge-based capacitance measurement technique.

116

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-720j-integrated-microelectronic-devices-spring-2007
http://bsim.berkeley.edu/models/bsim4/
http://cmosedu.com/cmos1/email/email2.htm

[39] Yongwang Ding and Ramesh Harjani, “A UNIVERSAL ANALYTIC CHARGE INJECTION

MODEL,” IEEE International Symposium on Circuits and Systems (2000), Authors presented

this paper at ISCAS 2000, May 28-31, 2000, Geneva, Switzerland.

[40] S. Turgis et al, “INTERNAL POWER MODELLING AND MINIMIZATION IN CMOS IN-

VERTERS,” ACM (1997), Article identification: 1997 ACM/0-89791-849-5/97/0003, Authors

Turgis, Daga, Portal and Auvergne at LIRMM UMR CNRS Montpelier, France.

[41] “Design Considerations for Logic Products Application Book,” (1997), Collection of ap-

plication reports and articles written or revised between 1992 and 1997 provided by Texas

Instruments as technical reference for the design engineer. Identifier: SDYA002.

[42] J. R. Yeargan et al, “Printed Circuit Board Design for Advanced Schottky Family,” Proceed-

ings of the IEEE Region 5 Conference (1985).

[43] I. S . Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, seventh ed.

(Academic Press, Burlington, MA, USA, 2007) Translated from Russian by Scripta Technica,

Inc. Edited by Alan Jeffrey, University of Newcastle, and Daniel Zwillinger, RPI..

[44] Chenming Hu, “BSIM Model for Circuit Design Using Advanced Technologies,” IEEE In-

ternational Symposium on Circuits and Systems (2001), 2001 Symposium on VLSl Circuits

Digest of Technical Papers. DOI: 10.1109/VLSIC.2001.934176 · Source: IEEE Xplore.

[45] T. Ytterdal, Y. Cheng and T. A. Fjeldly , “Mosfet device physics and operation,” (John

Wiley and Sons, Ltds, 2003) pp. 1 – 45, Chapter 1 of Device Modelling for Analog and RF

CMOS Circuit Design. isbn = 9780470863800. doi = 10.1002/0470863803.ch1. May request

copy of Chapter 1 from authors at researchgate.net.

[46] Yuhua Cheng and M. Jamal Deen, “MOSFET Modeling for RF IC Design,” IEEE TRANS-

ACTIONS ON ELECTRON DEVICES 52 (2005), Copy available for download at Y. Cheng

academia.edu account 21698939.

[47] “Star-Hspice Manual,” (1998), Manual is intended for design engineers who use Star-Hspice

to develop, test, analyze, and modify circuit designs. Avant! Corporation.

[48] Mounika Vanga, Generating Linear Models for the MOS Transistors and Implementing Them

In Obtaining Bode Surface Plots, Master’s thesis, Northern Illinois University, Department of

Electrical Engineering (2016), Thesis examined generating equivalent models for MOSFETs

where roots of transfer function are shifted by substituting reactive component equivalents to

permit creating three-dimensional Bode surface plots, making detection of roots easy..

117

[49] Richard Feynman , “Feynman Caltech Lectures; Vol. II,” (1963), Vol. II (electromagnetism

and matter) of two-year introduction to physics lectures at Caltech 1961 to 1963 (by 1965

Nobel Prize in Physics laureate, Richard Feynman).

[50] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard

to Wideband Amplifiers,” Journal of Applied Physics 19 (1948), When transient response of

a linear network to a unit step is monotonic rise to constant, a delay time and rise time can

be defined in such a way as to be computed simply from the Laplace system function of the

network.

[51] Liu and Hu, “BSIM4 and MOSFET modeling by Liu and Hu,” Reportedly explanations of

negative capacitance values in the BSIM4 internal parameters and how the values are evaluated

are found in Chapter 5.2 of this book (for purchase).

[52] “Principles of Semiconductor Devices,” (2011), B. Van Zeghbroeck with ECEE department

at the University of Colorado has posted well-written lectures (including numerous figures and

illustrations) covering semiconductors. See Chapter 7 MOS field effect transistors in particular.

118

http://www.feynmanlectures.caltech.edu/II_toc.html
http://ngspice.sourceforge.net/books.html
http://ecee.colorado.edu/~bart/book/book/contents.htm

	Measuring dynamic input capacitance of CMOS logic gates
	Abstract
	Contents
	Introduction
	Organization of this paper
	MOSFET drain-source symmetry
	Select CMOS process model
	Brief view of CMOS layout
	Sizing continued
	Device model cards utilized

	Capacitance
	CBCM, theory
	Appropriate input drive impedance
	Test frequency and rise/fall time considerations
	Nangate cell library databook
	Estimate operating frequency using rise time
	Estimate maximum switch rate from propagation delay
	Slew rate and full power bandwidth ffp
	Transit time estimate
	Choose test frequency

	CBCM: Observations of CBCM original implementation
	CBCM: Analyze original CBCM error
	2002 Fan et al analysis
	An energy band explanation
	2002 Fan et al proposed solution
	2004 Jensen et al proposed solution

	Our solution to the CBCM charge injection error
	Alternative fix if you prefer more manual work

	Revised CBCM results
	Test calibration capacitor
	1 GHz test NAND2_X1 loaded 59 fF
	 Run with 1 fF NAND2_X1 load
	 Run with 100 MHz NAND2_X1 test frequency
	 Run with 2 GHz NAND2_X1 test frequency

	Manual method
	Propagation delay
	Output resistance of NAND2_X1
	Method using exponential characterization
	Method using integration of VDS(t) and ID(t)

	Conclusion
	Non-linear capacitance in the MOSFET
	Intrinsic core capacitance model
	Model with extrinsic and intrinsic components
	BSIM4 RF high-speed settings
	A look under the hood
	Graph BSIM4 internal capacitances
	Graph BSIM4 internal charge variables

	Original CBCM measure discrete cap Ngspice-27 circuit code
	Revised CBCM measure discrete cap Ngspice-27 circuit code
	Revised CBCM measure NAND cap Ngspice-27 circuit code
	Uncorrected CBCM measure NAND cap Ngspice-27 circuit code
	Manually measure input capacitance, circuit file
	BSIM4 NMOS model card
	BSIM4 PMOS model card
	Some recommended texts for MOSFET/CMOS theory
	References

