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Abstract

In 1976 S. Nussinov [1] made the original proposal that solar neutrino packet length could be

constrained by the β+-decay interval over which the neutrino is emitted. That packet length in turn

could be used to estimate a coherence length beyond which the neutrino mass states, propagating

with slightly different velocities due to their squared mass splitting, would separate and no longer

be detectable coherently, i.e., flavor oscillations would no longer be possible. In this article we

examine the Nussinov calculations, the solar plasma physics, weak interaction details and the

packet length known from terrestrial reactor experiments. We conclude that solar neutrino packet

lengths are not constrained by the β+-decay interval, but lower bounded by the lifetime of the

virtual W+ boson in the weak interaction process and nominally by the necessary packet length

observed in terrestrial reactor oscillations.
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I. INCOHERENCE LENGTH

To estimate the distance at which a solar neutrino packet becomes incoherent, we require

an estimate of the neutrino packet length σx (the spatial width of, say, a Gaussian packet

along the Cartesian axis of propagation) in the following [2]:

Lcoh =
σx
∆v

= σx
2E2

∆m2
(1)

II. NUSSINOV 1976 INTERRUPTED PACKET EMISSION

In 1976 Nussinov [1] proposed that the neutrino packet length is approximately the time

interval during which it is emitted by the decaying nucleus, multiplied by the speed of light

(the neutrino being ultrarelativistic), i.e.,

σx = c · τemission

He then reasoned that because solar neutrinos are emitted from nuclei in hot, dense

plasma, the neutrino packet emission interval is shortened through collisions of the emitter

with neighboring nucleons or nuclei while the emission is in progress. This concept originated

in the context of stellar spectroscopy, A. A. Michelson hypothesizing in 1895 that causes

for the observed broadening of spectral lines included “...limitation of the number of regular

vibrations by more or less abrupt changes of phase amplitude or plane of vibration, caused

by collisions.” [3]. Discontinuity in the emission or absorption of the photon sine wave

train introduces components of higher frequency and thereby broadens a spectral line [4]

(the frequency distribution of a clipped sinusoidal wave train is inversely proportional to the

number of cycles included in the pulse [5]).

At the approximate surface of the Sun r� = 1 (nominal photosphere temperature 5772 K

[6]), there is an appreciable number of neutral or partially ionized atoms capable of absorbing

optical radiation1, creating the dark lines that identify particular elements in the solar

spectra, Gustav Kirchhoff writing in 1860 that “chemical analysis of the sun’s atmosphere

requires only the examination of those substances which, when brought into a flame, produce

bright lines which coincide with the dark lines of the solar spectrum”[8]. By optical radiation

we refer to photons absorbed (or emitted) during electron transitions between an upper and

1 See §14 Ionization and §17 Opacity in [7].

2



lower energy level in an atom, typically E1 electric dipole radiation [9]. It is reasonable to

expect that the electron orbitals of atoms in gas may be disturbed by collisions between

the atoms, or by collisions of free electrons with atoms, modifying the light emissions and

thereby broadening the associated spectral line [9].

Neutrinos, however, are not produced in the photosphere, but rather in the hot, dense

ionized plasma of the core of the Sun (see plasma density-temperature regime chart Figure

20.1 in [10]), the “emission regions occurring in a sequence of shells [which overlap, all ending

by solar radius ∼ 0.3 r�], following closely the location of nuclear reaction, orderly arranged

in a sequence dependent on their temperature” [11]. Nussinov estimated the nearest neighbor

distance there, i.e., plasma protons near the neutrino-emitting nucleus, to be d ≈ 10−9 cm

(and defines that to be equivalent to ≈ π phase between nucleus and neighbor particles) and

the proton thermal velocity to be vtherm ≈ 10−3 c (or 3 × 107 cm/s). Using those values, he

obtained an estimated collision interval (time between collisions of protons with β+-decaying

nuclei)

τcol =
d

v
=

10−9 cm

3 × 107 cm/s
≈ 3 × 10−17 s (2)

Tracing his route to the collision estimate in Eq. (2), he gives us the matter density

as ≈ 100 g cm−3. If we assume primarily ionized hydrogen (i.e., protons) present we can

multiply the matter density by Avogadro’s number to obtain a proton number density,

Np ≈ 100 g cm−3 × 1 mol H/1g × 6 × 1023 entities/mol ≈ 6 × 1025 p/cm3. Each proton

(and the small number of heavier nuclei present) has therefore a 1/Np “cell” of about V =

1.6 × 10−26 cm3 volume. Setting that equal to the volume of a sphere, 4πr3/3, we can solve

for the radius and obtain an approximate distance between plasma particles2:

V =
4

3
πr3

r =

(
3

4π
V

)1/3

r =

(
3

4π
1.6 × 10−26 cm3

)1/3

∼ 1.5 × 10−9 cm

Interestingly, Chandrasekhar’s 1943 average nearest neighbor distance formula [12] produces

about the same result

D = Γ (4/3)

(
3

4π

)1/3

N−1/3p = 0.55396N−1/3p ∼ 1.4 × 10−9 cm (3)

2 See, e.g., equation (14.43) in [7].
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Nussinov provided the plasma temperature at the location of interest as kBT ≈ 1 keV

(11.6 × 106 K × kB = 1 keV, using the Boltzmann constant kB in units kB = 8.6173 ×
10−5 eV K−1). With that temperature you can calculate the proton thermal velocity work-

ing in natural units eV, i.e., vtherm =
√
kBT/m =

√
Te/m [13] where Te is the tempera-

ture of the plasma particle in electron volts (∼ 103 eV in this case) and m ≈ 109 eV/c2 is

roughly the mass of a proton (938 MeV/c2 to be exact). That gives you quickly vtherm =√
(103 eV)/(109 eV/c2) = 10−3 c, the velocity as a fraction of the speed of light c.

So, using his parameters and methods we reproduce his estimate that the neutrino-

emitting nuclei are being hit about every 3 × 10−17 s by plasma protons. Inverting that

collision interval gives the rate of collsions, ν = 1/τcol = 1/(3 × 10−17 s) ≈ 3 × 1016 s−1

. For comparison, we have Bahcall [14] (citing in turn A. Loeb Phys. Rev. D 39, 1009

(1989)) giving an estimate of 1015 s−1 collision rate on 7Be ions in the solar interior3, within

an order of magnitude of our figure.

A. Coulomb potential

The question is, do any of those collisions actually interrupt a neutrino emission? Nussi-

nov reasons that the Coulomb potential felt by the 7
4Be nucleus from a neighboring proton is

4e2/r ≈ 500 eV and changes by a factor of two in a collision (because he defined the neighbor

distance to be equivalent phase ∼ π and considers a phase change ≥ π/2 to constitute an

interruption).

The Coulomb potential arising from a neighbor proton Z1 within d distance of a 7
4Be

nucleus Z2 is:

EC =
Z1Z2e

2

4πε0

1

d
(4)

(Refer to Eq.(14.6) in [15] and Eq.(20) in [16], d ≥ RC , i.e., distance of approach greater

than or equal to the Coulomb charge radius of the target nucleus.) For convenience we

will set ~ = c = ε0 = 1 and work in natural units, all quantities expressed in eV. In this

case the elementary charge is e =
√

4πα ≈ 0.303 dimensionless. We convert our distance

d ≈ 10−9 cm to natural unit length d = 10−9 cm/(~c) = 10−9 cm/(6.5821 × 10−16 eV s ×
2.9979 × 1010 cm/s) = 5.0677 × 10−5 eV−1.

3 Bahcall does not specify what species of plasma particles are considered in calculating that rate.
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Substituting the proton charge Z1 = 1, 7
4Be charge Z2 = 4 and other quantities in Eq. (4)

we calculate:

EC =
Z1Z2e

2

4πε0

1

d

=
1 · 4 · (0.303)2

4π

1

5.0677 × 10−5 eV−1

=
0.3672

6.3683 × 10−4 eV−1

≈ 576 eV

Nussinov then states that the resulting phase change of the emitting nucleus during the

collision is ∆φ ≈ ∆E∆t/h ≈ 12 rad, much greater than the limit of ≈ π/2 said to constitute

interruption of an emission by phase loss of the emitter 4. Using his phase change relation,

collision time and his stated factor of two change in the potential we approximate his result:

∆φ ≈ (∆E)(
∆t

h
) = (2)(576 eV)(

3 × 10−17 s

4.1357 × 10−15 eV s
) ∼ 8.4 rad

He concludes that the plasma proton collisions at interval ∆t = 3 × 10−17 s are more than

energetic enough to interrupt a neutrino packet emission and therefore constrain that packet

length to: σx = c · 3 × 10−17 s ∼ 9 × 10−7 cm or less.

B. Resulting incoherence length

Using equation Eq. (1) and the 1976 Nussinov neutrino mass split ∆m2 of ∼ 1 eV2

with neutrino energy ∼ 1 MeV and packet length ∼ 9 × 10−7 cm, the coherence length is

≈ 18 km (he estimated ≈ 1 − 10 km), i.e., the neutrino would become incoherent within a

few kilometers, so of course could not arrive coherently at Earth:

Lcoh = σx
2E2

∆m2

= 8.99 × 10−7 cm · 2 · 1 MeV2

1 eV2

= 8.99 × 10−9 m · 2 × (106)2

= 17.98 km

4 See also Collins discussing the Weisskopf criterion of 1 radian phase change of emitter constituting an

interruption in an emitted photon wave train.[4]
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We can update his calculation using a recent value of ∆m2
21 = 7.5 × 10−5 eV2 and a neu-

trino energy of 0.862 MeV. That energy represents the higher monoenergetic line (emitted

neutrino energy in the beta-decay) from the transition of 7Be to the ground state of 7Li in

a primarily continuum electron capture [14].

Using the same neutrino packet length calculated above, but with the updated mass split

and neutrino energy, we obtain a coherence length of ∼ 178 ×103 km with equation Eq. (1).

The distance to Earth is 1.496 × 108 km so we would again expect only decoherent 7Be

neutrinos to arrive at Earth detectors. The coherence distance is directly proportional to

the neutrino energy per Eq. (1), so solar species of lower energy would also arrive at Earth

decoherent.

III. PLASMA NUCLEAR CONSIDERATIONS

While the above approach Section II represents a very clever and original insight by

Nussinov (in suggesting that neutrino mass states may separate and no longer overlap over

suitable distances), the mechanism constraining the supposed time available for emission of

the neutrino packets assumes that elastic scattering processes, e.g., plasma proton collisions

with the target β+-decay candidate nucleus, can interrupt an essentially nuclear process,

i.e., a process involving nuclear energy levels and spatial scales. To “see” the nucleus in an

atom requires a scattering probe (a particle projectile colliding with the target atom) de

Broglie wavelength of λ ≈ 10 fm [17]. To interact with a nucleon within the nucleus requires

λ ≈ 1 fm [17]. Using the plasma temperature from above, 11.6 MK, we see the average

proton kinetic energy is [18]:

〈Ep〉 =
3

2
kBT =

3

2
(8.6173 × 10−5eV/K)11.6 × 106 K ∼ 1.5 keV

At that kinetic energy a plasma proton would have a de Broglie wavelength of:

λ =
h

p
= c

h√
2mpEp

= 2.9979 × 108 m/s
4.1357 × 10−15 eV s√

(2)(938 × 106 eV)(1.5 × 103eV)
' 739 fm

We used the Newtonian relation p =
√

2mE to obtain the non-relativistic (the corresponding

velocity is only ∼ 0.002c) momentum from the kinetic energy. A projectile of this wavelength

would be unable to interact significantly with a nucleus, much less a proton within a nucleus.

But what about the Coulomb interaction we examined above? A change of 576 eV

electrostatic field neighbor potential might constitute sufficient perturbation of an atom in
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the process of radiating or absorbing a photon, that is, one of the electrons of the atom’s

electron shells emitting or absorbing a photon in a transition from or to an excited level.

The atomic energy transition levels involved are of the order O(eV). For example, the

photospheric 249.7 nm BI (a neutral boron atom near the apparent surface of the Sun, the

photosphere, where the temperature is low enough ) line involves the absorption of a photon

of 4.9639 eV kicking the lone outer shell 2p electron (with term 2P◦3/2, already in an excited

state) up to 3s (with term 2S1/2)
5.

Contrast that level of energy with the Coulomb barrier of roughly 2 MeV that a plasma

proton would have to overcome to penetrate to the nucleons within a 8B target nucleus:

Vc =
Z1Z2e

2

4πε0

1

Rc

=
Z1Z2e

2

4πε0

1

1.1
(
m

1/3
A +m

1/3
B

)
=

1 · 5
(√

4πα (~c)
)2

4π(1)

1

(3.3047 fm)

=
5 (0.303)2 (~c)
4π(3.3047 fm)

=
(0.459)(197.33 MeV fm)

41.527 fm

= 2.1787 MeV

The Rc =
[
1.1
(
m

1/3
A +m

1/3
B

)]
expression used the mass of the proton and 8B target nucleus

in u, i.e., 1.00727 u for the proton and 8.021863 u for 8B, to calculate the distance in fm

between their two charge fields as they come almost into contact. The atomic mass given

by Krane for 8B is 8.024606 u [15]. We subtracted the mass of the associated electrons,

5× 0.000549 u = 0.002743 u, from the Krane atomic mass to give us the approximate mass

of the nucleus, 8.021863 u. There is a small amount of electron binding energy, but it is of

order O(10−6 u) so we forgo that correction.

The proton charge Z1 = 1 and 8B charge Z2 = 5. We used natural units for the vacuum

permittivity ε0 = 1 and elementary charge e =
√

4πα ≈ 0.303 dimensionless. It was

convenient to use ~c in units MeV fm.

Even so, the protons do have a chance of quantum mechanical tunneling past the Coulomb

barrier at higher relative collision velocities than the ∼ 0.002c mean plasma velocity we

5 The 249.7 nm BI line is given in [19]. The transition data is from the NIST Atomic Spectra Database [20]

A handbook of atomic spectroscopy is available there also [21].
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calculated above. However, the Gamow peak energy (where the probability of success is

highest) for this collision system at our plasma conditions given earlier is 20.8616 keV

(calculated below). That energy is far out on the right skirt of the Maxwell-Boltzmann

velocity distribution with equivalent velocity of ∼ 2.1211 × 106m/s, i.e., a very low rate of

occurrence O(10−6). There is a small enhancement of cross section for a positive projectile

incoming on a plasma ion with negative Debye shielding (a cloud of plasma electrons, the

Debye sphere, which gather around positive ions), but for Z1Z2 of order 10 or less it is only

a few percent improvement at best [22].

IV. CALCULATE LIKELY BARRIER PENETRATION RATE

Let us try to quantify the possible rate of Coulomb barrier penetrations. We integrated

the availability of projectiles vs energy over the relevant solar energy range 5 keV to 30 keV

[22]. We made use of equation 3 in the NACRE II update of charged-particle-induced

thermonuclear reaction rates for mass numbers A < 16 [16]:

NA〈σv〉 = 3.73 × 1010 µ̂−1/2T
−3/2
9

∫ 0.030 MeV

0.005 MeV

Eσ(E) exp[−11.605E/T9]dE (5)

where T9 = 0.0149 is the Kelvin temperature of the plasma in units 109 K, E is the center

of mass energy in units MeV, and µ̂ = mAmB/(mA+mB) = (1.00727 ·8.021863)/(1.00727+

8.021863) = 0.8949 u the reduced mass of the target 8
5B nucleus and proton projectile

collision system (see above for details of the 8
5B mass assignment).

The integral above in Eq. (5) is basically folding two distributions over the energy range

of interest. One distribution, as we mentioned above, is the Boltzmann energy distribution

of particles in a gas (see, e.g., equation (15) in Hans Bethe’s 1967 Nobel lecture [23]), the

availability of collision system participants decreasing with increasing energy. The second

distribution is the cross section, which is proportional to the probability of penetrating the

Coulomb barrier, that probability increasing with energy (there is an upper limit to the

applicability of the astrophysical S-factor discussed below, but we will not encounter that is

our context). The resulting curve (folding the two distributions) is a window of opportunity

as it were, the Gamow window, centered around the Gamow peak energy, EG [22]:

EG =
[
(παZ1Z2kT )2(µ)

]1/3
= 1.2204(Z2

1Z
2
2 µ̂T

2
6 )1/3 µ = reduced mass, µ̂ in atomic units
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For example, for the case at hand of the proton collision on 8
5B at T6 = 14.9420 MK (this

formula accepts plasma temperature in units 106 K and returns the Gamow peak energy in

keV):

EG = 1.2204(Z2
1Z

2
2 µ̂T

2
6 )1/3 = (1.2204)

[
(12 · 52)(0.89494 u)(14.9420 MK)

]1/3
= 20.8618 keV

We constructed a simulated S-factor using the suggested rms (core) radius 2.84 fm of 8B

in the ground state [24]. We squared that radius and multiplied by π to create a simple

geometrical cross sectional area approximation (∼ 0.2534 b).6 Finally, we multiplied this

cross section by the Gamow peak energy 20.8616 keV to simulate an S factor with value

5.2861 keV b. For comparison, the NACRE II rate for a similar reaction, 9Be(p, γ)10B (a

plasma proton capture on the 9Be ion) is ∼ 1 keV b [16].

The S-factor is usually obtained by extrapolating experimental cross sections (σ(E))

obtained at relatively high energy to the low energies found in solar plasma, augmenting or

replacing experimental data with calculations based on various nuclear models when needed:

S(E) = Eσ(E) exp[2πη(E)] (6)

The Gamow penetration factor, exp [2πη(E)] in Eq. (6) above, describes the quantum me-

chanical tunneling probability. The cross section σ(E) measured in the lab (e.g., with

accelerator-driven collisions) is highly energy dependent and typically varies by orders of

magnitude.

The S-factor is more slowly varying in the low-energy limit, so is used when calculating

solar reaction rates. The S-factor is still energy dependent, but less so than the cross section,

so for our rough approximations here we simply let S be a constant and include the energy

dependent effects through the tunneling probability and the Boltzmann distribution within

the integral in Eq. (5). We are not attempting to identify any resonances over our range of

integration, but it seems unlikely that such a resonance would appear below our upper limit

of 30 keV in any case.

We used our S-factor estimate to calculate the Eσ(E) quantity in the integrand in Eq. (5)

dynamically for each energy step in the numerical integration process (computer code in-

cluded in Appendix VII):

E σ(E) = S(E) exp[−2π η(E)]

6 This is rather crude, but keep in mind that a 20.8618 keV proton would have an effective cross-section of

πλ2 ≈ 31 b, orders of magnitude larger than the nuclear target.
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In that expression η, the Sommerfeld parameter (notice that the sign becomes negative when

moved to the S(E) side of equation Eq. (6) above), is:

η = 0.1575ZAZB(µ̂/E)1/2 (7)

where µ̂ = mAmB/(mA + mB) is the reduced mass in atomic mass units of the target-

projectile collision system, ZA and ZB the proton projectile and target 8B nucleus charge

respectively, and E is in MeV units (from the NACRE II paper cited). The exponential

incorporating η, exp[−2πη(E)], is, as we mentioned earlier, the Gamow penetration factor,

which describes the probability of quantum-mechanical tunneling through the Coulomb bar-

rier, decreasing the cross section as energy decreases. This WKB approximation 7 for the

Gamow penetration factor is valid if 2πη ≥ 1 [22].

At the Gamow peak energy for our collision system, using the parameter values specified,

the tunneling probability (or Gamow penetration factor) is:

exp[−2πη(20.8616 keV)] = exp[−2π (5.1578)] = 8.4256 × 10−15

2πη in this case is (2π)(0.1575)(1)(5)(0.8949 u/0.0208618 MeV = 32.4079 using Eq. (7)

above. The WKB approximation is therefore valid per the criterion above.

Integrating Eq. (5) produced NA〈σv〉 = 9.0261 × 10−13 cm3 mol−1 s−1. We divide that

result by Avogadro’s number NA to obtain the reaction rate averaged over a Maxwell-

Boltzmann distribution: 〈σv〉 = 1.4988 × 10−36 cm3 s−1 for our proton impingement on

8B.

For comparison, the NACRE II paper cited above gave for a similar reaction, 9Be(p, γ)10B

(a plasma proton capture on the 9Be ion) thermonuclear reaction rate at T = 15×106 K the

value NA〈σv〉 = 1.43 × 10−10 cm3 mol−1 s−1, which becomes 〈σv〉 = 2.374 × 10−34 cm3 s−1

when divided by NA. It appears that part of the increase in reaction rate for this 9Be(p, γ)10B

system relative to our 8B target can be attributed to the increase of the Gamow penetration

factor to 6.6234×10−13, the Coulomb barrier potential decreasing with one less proton than

our 8B nucleus target. Also, NACRE II integrated over an energy range extending past

1 MeV and included several resonances.

7 Wentzel, Kramers, Brillouin and Jeffreys developed a quasi-classical method for approximating solutions

to linear second-order differential equations like the Schrödinger equation. Gamow, Condon and Gurney

used this method to calculate the probability of α particles tunneling through the nuclear Coulomb barrier.
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To estimate the number of collisions per second we multiply the reaction rate times the

number density of the 8B target and proton projectiles:

fcol = N(8B)Np〈σv〉 (8)

Having no data on the estimated dynamic abundance of the 8B target nucleus, we use the

mass fraction of precursor 3He at radius 0.0460 in the B16 GS98 data set to calculate the

number density of that nucleus:

3He mass fraction(r� = 0.0460) = 1.3440× 10−5

matter density(r� = 0.0460) = 130.1 g cm−3

3He density(r� = 0.0460) = (1.3440× 10−5)(130.1 g cm−3) = 1.7485× 10−3 g cm−3

3He number density(r� = 0.0460) = [(1.7485× 10−3 g cm−3)/(3.016029 g)](NA) = 3.49× 1020 cm−3

NA above is Avogadro’s number, 6.0221× 1023 mol−1. We obtain the number density of 3He

in line 4 of the equation group above by dividing the mass density of the nucleus by its

molar mass, 3.016029 g. The molar mass is equivalent to the atomic weight in u, where u is

the unified atomic mass unit defined as 1/12 the mass of a 12C atom.

About 16.7% of the 3.49 × 1020 cm−3 3He available at that radius, 5.8306 × 1019 cm−3,

fuses with available 4He (α particles) to produce 7Be. A minute fraction of that, 0.12% =

6.9968 × 1016 cm−3, captures a proton to form 8B via 7Be + p → 8B + γ, our proton

bombardment target (fusion chain fractions from [25], their figure 4).

Thus we approximate the 8B number density as 6.9968 × 1016 cm−3. We use proton

density equal to the electron density we obtained from the B16 GS98 SSM data i.e., 5.4670×
1025 cm−3. Multiplying our reaction rate, 〈σv〉 = 1.4988 × 10−36 cm3 s−1, times the proton

and 8B number densities per Eq. (8) above) we obtain a likely barrier-penetrating collision

rate of fcol = 5.7332× 106 s−1, or a collision interval of 1/frate = 1.7442× 10−7s.

If that interval was constraining neutrino emission it would imply neutrino packets σx =

c · 1.7442 × 10−7 s ≈ 52 m long, which seems unreasonable.

A. Comment on 8B specific configuration

8
5B is a weakly bound nucleus on the proton-rich side of the drip line [26] with Z = 5

and N = 3 and the unpaired proton in the 1p3/2 orbit with only 137 keV g.s. (ground

11



state) binding energy (compare roughly 4 MeV BE per nucleon we calculated with the

von Weizsäcker formula as given in Krane pg. 68 [15]). The r.m.s. 1p3/2 radius has been

estimated at 4.228 fm. Comparing with the SW (Saxon-Woods average nuclear potential)

radius R0 = 2.4 fm, the 1p3/2 odd proton, which will β+ decay to a neutron to produce

8
4Be in about 770ms [27], is very weakly bound and is spatially extended (a halo more or

less). One calculation [28] gives the proton separation energy for 8
5B as 0.74 MeV and that

becomes negative −3.26 MeV if the calculation is repeated with (Z,N) = (5, 2), i.e., if the

proton-neutron ratio is increased by one a proton will “drip” off the nucleus immediately.

However, even the rare high energy 20.816 keV plasma proton would have a relatively

large de Broglie wavelength of λ = h/p ∼ 200 fm (see Section V below for a detailed

calculation of the de Broglie wavelength). The target nucleus is . 4 fm. The incoming low

energy proton would see a nucleus (and a nucleus with a strongly repulsive positive Coulomb

field O(2 MeV) at that, as we discussed above) rather than individual nucleons, i.e., would

not “see” the extended 1p3/2 proton.

The more fundamental question is, even with Coulomb barrier penetration could an

incoming plasma proton actually “interrupt” a β+ process?

V. NUCLEON SCALE CONSIDERATIONS

In β+ decay (see Fig. 1), a virtual W+ boson weak-force propagator connects an up to

down quark transmutation to a e+ and νe emission. The process is p:udu→ n:ddu+ e+ + νe

where the W+ is the propagator directed to the lepton emission vertex. Our notation p:udu

signifies nucleon:quarks, e.g., a proton and its constituent valence up, down and up quarks.8

If we simply apply the energy-time Uncertainty Principle, i.e.,

∆E∆t ≥ ~
2

interpreted as, per Concepts of Modern Physics; Arthur Beiser [30], “an event in which an

amount of energy ∆E is not conserved is not prohibited so long as the duration of the event

does not exceed ~/2∆E ”, we may estimate the virtual W+ lifetime in the β+ decay process

8 You could say that the W+ couples to valence quarks at production, for our process u→ d+ e+ + νe, and

to e+νe pairs at decay (β+), p→ n+ e+ + νe. [29].
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FIG. 1. β+ decay, p→ n+ e+ + νe, showing underlying proton to neutron valence quark change,

u→ d, and virtual W+ intermediate vector boson emission and decay to lepton pair e+ and νe.

as

τW ≈
~

2MW

=
(6.582 × 10−16 eV s)

(2)(80.385 × 109 eV)
= 4.0941 × 10−27 s

where 80.385 GeV is the average on-shell W mass given in the PDG 2016 reference cited

earlier from combined Tevatron and LEP experiments using the electron and muon decay

modes. The W in these measurements was created in high energy c.m. (center of mass

frame) electron positron collisions at LEP and Tevatron, i.e., it was not a virtual particle.

If the neutrino is emitted at the speed of light during that ∆t = τW , the packet length

would be ∆t · c = (4.0941 × 10−27 s) · (2.9979 × 1010 cm s−1) = 1.2274 × 10−16 cm.

We have from PDG 2016 an average width (on-shell) for the W+ of ΓW = 2.085 GeV

(particle listings pg 615; average of Tevatron and LEP results). We can obtain a lifetime

from that with the relation:

τ =
h

Γ
=

(4.1357× 10−24 GeVs)

(2.085 GeV)
= 1.9778× 10−24 s

Were that the ∆t constraining the neutrino emission time the packet could be 5.9465 10−14 cm.

We take note again that the W is not on-shell in a β+ decay, but is rather a virtual boson.

However, we know that the wave packet describing a particle cannot be smaller than its

De Broglie wavelength [15], which for a p = 10 MeV neutrino (e.g., a 8B neutrino) would be

λ = c
h

p
= 2.9979 1010 cm/s

4.1357× 10−15 eV s

10 × 106 eV
= 1.2398 10−11 cm ultra-relativistic neutrino

We can check for any significant increase in the virtual W+ lifetime in nuclear β+ decay

resulting from the Lorentz factor for a typical nucleon velocity:
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pnuc ≈ R−1 typical nucleon momentum inverse nuclear radius

pnuc ≈ ~c (R)−1 = 197 MeV fm/2.5 fm = 78.93 MeV

Enuc =
√
p2nuc +m2

nuc =
√

(78.93 MeV)2 + (938 MeV)2 = 941.59 MeV

γnuc = Enuc/mnuc = 1.0035 Lorentz factor

The increase in virtual lifetime attributable to time dilation in the frame of the decaying

nucleon within the nuclear environment would be insignificant with γ ∼ 1. The inverse

nuclear radius approximation for typical nucleon momentum was given in [31].

The highest Fermi momentum level in the Fermi gas model is around pFermi ∼ 253 MeV/c

calculated for the 8B nucleus. The 1p3/2 proton in this nucleus may well be at or above this

higher momentum value. Proton knock-out experiments, in particular, exclusive scattering

where the scattered O(5 GeV) accelerator beam electron and two ejected nucleons from a

target nucleus are measured in the final state, (e, e′pN) where N is a second proton or

neutron emitted back-to-back with the first, have revealed that only about 80% of the

contained nucleons scatter with a momentum conforming to single nucleons moving under

the influence of an effective mean-field potential within the nucleus (i.e., the shell model or

independent particle model).

Instead, ∼ 20% of the nucleons are short range correlated (SRC) pairs, predominantly

neutron-proton systems (which have the same quantum numbers as the deuteron, S = 1

and T = 0) with very large relative momentum (up to a few times the Fermi momentum)

but small center of mass momentum. You might say these pairs were “doing the neutron

dance” as American pop group The Pointer Sisters sang, racing around and past each other,

dangerously close as it were. See [17] for a well-written paper describing the experimental

and theoretical details of a growing body of evidence that the internal quark structure of

bound nucleons differs from that of free nucleons and that the SRC pair phenomenon is

connected to, or responsible for, the EMC effect for valence quarks, that is, the reduction

in the DIS (deep inelastic scattering) cross-section ratios for nuclei relative to deuterium.

This SRC phenomenon suggests to us that our 8B 1p3/2 proton (or any of the solar

β+-decay protons in other nucleuss) is frequently SRC-paired with a neutron at very high

momentum pn,p > pFermi > 253 MeV/c and therefore even less likely (than when it is

conforming to mean field approximations and more typical but nonetheless high momentum
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relative to plasma energies as we discussed above) to be affected by the low O(eV) energies of

plasma electrons or protons in the Sun, i.e., unlikely to be interrupted by plasma collisions

while emitting a neutrino during the process of β+ decay. The γ factor did not increase

significantly for pFermi ∼ 253 MeV/c vs the 78.93 MeV value used earlier, i.e., the increase

in virtual lifetime attributable to time dilation in the frame of the decaying nucleon within

the nuclear environment would still be insignificant with γ ∼ 1.0357.

VI. TERRESTRIAL REACTOR EXPERIMENTS PROVIDE LOWER BOUND

PACKET LENGTH

As Kayser pointed out in 2010 (cited earlier), the fact that the KamLAND experiment

(c. 2002) observed oscillations at baselines of O(100 km) implies that neutrino packets from

β-decay of nuclear reactor fission fragments are σx ≥ 10−3 Å, or ≥ 10−11 cm. We assume

CP invariance (invariance of charge conjugation and parity combined), so our discussion of

antineutrinos ν̄e is applicable to neutrinos νe, i.e., in general P (ν` → ν`′) = P (ν̄` → ν̄`′),

`, `′ = e, µ, τ .

You may use Eq. (1) and solve for σx given the energy and known baseline over which

the neutrinos appeared coherent given that oscillations were observed. Per Reactor-based

neutrino oscillation experiments by Bemporad et al (in Reviews of Modern Physics, Volume

74, April 2002 ) figure 2 (reactor flux and interaction spectrum), we will use antineutrino

energy E = 4 MeV, i.e., around the peak energy of the reactor antineutrino spectrum.

We will use Kayser’s O(100 km) for the average distance from the KamLAND detector to

nearby nuclear reactors (some sources estimate 〈L〉 = 175 km but we will use Kayser’s value
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in order to replicate his σx estimate).

Lcoh =
σx
∆v

= σx
2E2

∆m2

σx = Lcoh∆v

= (100 × 103m)
∆m2

2E2

= (105m)
7.5 × 10−5 eV2

(4 × 106eV)2

σx(KamLAND) = 2.3437 × 10−3 Å

≥ 2.3437 × 10−11 cm

A similar calculation based on an estimate of LCOH ≈ 10 km for the Daya Bay reactor

experiments at antineutrino energy 4 MeV gives us an estimate of the antineutrino packet

length of ≥ 7.46× 10−11 cm [32]. Note that this calculation required that we use the ∆m2
13

mass split of 2.445 × 10−3 eV2 relevant in this short baseline reactor antineutrino context,

rather than the ∆m2
12 = 7.5 × 10−5 eV2 solar split which is primarily the context of our

discussions.

For the p = 4 MeV KamLAND reactor neutrino the de Broglie wavelength is λ = h/p =

3.0996 × 10−11 cm. These estimates based on terrestrial oscillation observations seem to

agree on O (10−11 cm) minimum packet length, supported by general de Broglie wavelength

considerations. In light of the constraints on the lifetime of the virtual W boson above,

i.e., the neutrino emission time interval should be not much greater than 10−27-10−24 s, we

suggest that the packet length of neutrinos emitted in β-decays are all O(10−11 cm).

VII. CODE FOR NUCLEAR RATE CALCULATIONS

The following is the Python computer code that implements the nuclear reaction rate

integration equation Eq. (5) discussed in Section IV). Use assumes you have SciPy, NumPy,

and Python 3 and know how to make code adjustments if you have different versions:

# coding: utf-8

from scipy import constants

import math
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import numpy as np

from scipy.integrate import simps

m_p_amu = constants.value(’proton mass in u’)

m_e_amu = constants.value(’electron mass in u’)

# Avogadro’s number 6.022140857e+23

N_0 = constants.value(’Avogadro constant’)

c = constants.value(’speed of light in vacuum’) # m/s

# specify projectile and target charges

Z_1 = 1 # an incoming plasma proton

B8_Z = 5 # 8B nucleus has 5 protons

Z_2 = B8_Z # nucleus about to have a collision

# K, temperature at r=.0460, times 10^6 K (i.e., MK)

T_MK = 14.9420

# the reduced mass in atomic unit code

A_1 = m_p_amu # A_1 incoming nucleon is a proton of mass 1.00727647.. u

# 8/5 nuclide mass per Krane Intro Nuclear Phys table of nuc props

B8_atomic_mass = 8.024606 # atomic mass units u, must subtract 5 electron mass

B8_electron_shell_mass = (B8_Z*m_e_amu)

B8_nuc_mass = B8_atomic_mass - B8_electron_shell_mass

# ignore positive correction for lost electron binding E, O(1e-6)

A_2 = B8_nuc_mass

mu_hat = (A_1 * A_2)/(A_1 + A_2)

# NACRE II equation 3 from

# http://arxiv.org/abs/1310.7099v1

# first take care of the constants out front of integral

17



# convert our operating temperature from million K to billion K as required

# mu_hat reduced mass u calculated earlier above; T_9 is global used below also

T_9 = T_MK / 1e3

in_front = 3.73e10 * mu_hat**(-1/2) * T_9**(-3/2)

# get Gamow peak; uses temperature in MK; Adelberger 1998 eq 2

# https://arxiv.org/abs/astro-ph/9805121

E0_keV = 1.2204*( Z_1**2 * Z_2**2 * mu_hat * T_MK**2 )**(1/3)

# construct array of integrand function values to call in the integration

# make array of dE steps, original limits around E0; the step is returned->dE

# we will use Adelberger 1998 pg 6 typical E solar fusion 5 kev - 30 keV

NACRE_low_lim_MeV = 0.005 # 5 keV in units of MeV

NACRE_high_lim_MeV = 0.030 # 30 keV in units of MeV

E_steps, dE = np.linspace(NACRE_low_lim_MeV, NACRE_high_lim_MeV, num=100, retstep=True)

# create simulated astrophysical factor S

# let us use simply the geometrical cross section, pi R^2

# Be7 to 8B astrophys reaction.pdf gives 2.84 fm for this weakly bound system

eff_radius = 2.84

S0_18_fudged = math.pi * (eff_radius*1e-15)**2 # result in m^2

# now per Krane a measured cross section is multiplied by E of measurement

# to give S factor; we want our S factor to come to max at E = E0, so

# let us say the cross section was measured there

S0_18_fudged = S0_18_fudged * E0_keV # now have keV m^2

# we want the cross section sigma(E) with E in MeV and sigma in b

# so let us convert S0_17 to Mev b here

# times 1e28 converts m^2 to barn; divide by 1e3 if convert keV to Mev
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S0 = (S0_18_fudged*1e28) / 1e3 # convert keV m^2 to MeV b

eta_frontend = 0.1575*Z_1*Z_2 # get constant part of eta calculation

def E_sigmaE(Energy):

"""calculate and return E * sigma(E) given E in MeV"""

S_of_E = S0

eta_of_E = eta_frontend * (mu_hat/Energy)**(1/2)

return(S_of_E*math.exp(-2*math.pi*eta_of_E))

# returns E sigma(E) = S exp(-2pi eta) defined by Adelberger 1998 pg 6, eq 7

# will use T_9 global temperature in units 10^9 K

# this function populates the integrand array

def integrand_step(Energy):

"""accept E in MeV and calculate the integrand function value """

return(math.exp(-11.605*Energy/T_9)*E_sigmaE(Energy))

# we provide f(E) as precalculated

# array integrand_fcn_values, E values in E_steps

iteration_limit = int(E_steps.shape[0])

integrand_fcn_values = np.zeros(iteration_limit)

for indx_1219 in range(0, iteration_limit):

integrand_fcn_values[indx_1219] = integrand_step(E_steps[indx_1219])

integration_14GK = simps( integrand_fcn_values, x=E_steps )

# and finish the calculation by applying the front-end to the integration

N_A_sigmav_8Bp_14MK = integration_14GK * in_front
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# divide by Avogadro number to see sigma v (cross section * velocity)

sigmav_8Bp_14MK = N_A_sigmav_8Bp_14MK/N_0

# at solar r = 0.0460 number density of electrons ( same ~protons, neutral)

n_e_r0460 = 5.4670e25 # cm^-3

# don’t know 7Be, so use 3He as proxy (same radius, from same SSM data)

n_3He_r0460 = 3.4914e20

# 16.7% of the 3He fuses with alpha’s to produce 7Be

Be7_from_3He = n_3He_r0460 * 16.7 * 1e-2

# 0.12% of that 7Be captures a proton to from 8B (briefly)

B8_from_7Be = Be7_from_3He * 0.12 * 1e-2

collision_freq_8Bp = sigmav_8Bp_14MK * n_e_r0460 * B8_from_7Be

collision_interval_8Bp = 1 / collision_freq_8Bp

# parameters used, results

print("Temperature {0:.4f} GK".format(T_9))

print("reduced mass (mu hat): {0:.8f} u".format(mu_hat))

print("8B atomic mass (Krane): {0:.6f} u".format(B8_atomic_mass))

print("8B atom electron mass: {0:.6f} u".format( B8_electron_shell_mass ))

print("8B nuclear mass minus electron mass: {0:.6f} u".format(A_2))

print("electron mass: {0:.6f} u".format(m_e_amu))

print("proton mass: {0:.7f} u".format(m_p_amu))

print("simulated S factor for 8B p collisions: {0:.4f} keV b". format(S0*1e3))
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print("NACRE II E0 (Gamow peak) = {0:.4f} keV".format(E0_keV))

print("calculated N_A <sigma v> 8B->p: {0:.4e} cm^3 mol^-1 s^-1".\

format(N_A_sigmav_8Bp_14MK))

print("integrated over E range {0:.3f} to {1:.3f} keV".\

format(NACRE_low_lim_MeV*1e3 ,NACRE_high_lim_MeV*1e3))

print("calculated sigma v: {0:.4e} cm^3 s^-1".format(sigmav_8Bp_14MK))

print("3He density: {0:.4e} cm^-3".format(n_3He_r0460))

print("7Be density: {0:.4e} cm^-3".format(Be7_from_3He))

print("8B resulting density: {0:.4e} cm^-3".format(B8_from_7Be))

print("nucleon projectile density: {0:.4e} cm^-3".format(n_e_r0460))

print("estimated collision frequency p on 8B: {0:.4e} s^-1".\

format(collision_freq_8Bp))

print("estimated collision interval p on 8B {0:.4e} s".\

format(collision_interval_8Bp))

# estimate neutrino packet length if constrained emission on that interval

neutrino_packet_8Bp = c*collision_interval_8Bp

print("corresponding neutrino packet len c*t then {0:.4f} m".\

format(neutrino_packet_8Bp))

# accessory code: cross check integration reaction rate using

# equations 6 and 7 per Longland 2010 (T_MK*1e-3 is T_9)

# http://arxiv.org/abs/1004.4136v1

tau_Longland_0512 = 4.2487*(Z_1**2 * Z_2**2 * mu_hat * (T_MK*1e-3)**(-1))**(1/3)

# our simulated S0 is in MeV b as required by Longland equation

N_A_sigma_v_Longland = ( 4.339e8 / (Z_1*Z_2) ) * (1/mu_hat) * S0 *\

math.exp(-tau_Longland_0512) * tau_Longland_0512**2

print("cross check above integrated result:")

print("tau: {0:.4f}".format(tau_Longland_0512))

print("NA sigma v: {0:.4e} cm^3 mol^-1 s^-1".format(N_A_sigma_v_Longland))
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# accessory code:

# eta sommerfeld parameter calculator

print("reduced mass: {0:.4f} u".format(mu_hat))

print("target charge: {0:.1f}".format(Z_2))

E_eta = E0_keV/1e3 # they want MeV for eta_s formula

print("energy: {0:.4f} keV".format(E0_keV))

# eta_S for Sommerfeld parameter; equation from NACRE II paper

# http://arxiv.org/abs/1310.7099v1

eta_S = 0.1575*Z_1*Z_2*(mu_hat / E_eta)**(1/2)

print("eta at Gamow peak E0: {0:.4f}".format(eta_S) )

print("eta * 2 * pi = {0:.4f}".format(eta_S*2*math.pi))

# per Adelberger 1998 2pi eta should be gte 1 for WKB approx validity

# Gamow penetration factor then:

print("tunneling probability: {0:.4e}".format( math.exp(-eta_S*2*math.pi) ))

VIII. READING AND WORKING WITH SSM DATA

The SSM (Standard Solar Model) data we have used in this paper were kindly provided in

simple character tabular format by researcher Aldo Serenelli at SSM Data. The formal paper

describing that model (and comparing to others) is found in [33] and an excellent description

of solar models and the relevant concepts at [34]. The file header (the commented lines

preceding the rows and columns of data) for the GS98 comp neutrino and e profile.dat

9 gives the format:

# Distribution of neutrino fluxes in the B16(GS98) standard solar model model.

#

# arXiv:1611.09867

#

9 Do not be intimidated by the dat file extension, it is an ASCII text data file, albeit without MS Windows

CR LF terminations, so on a Windows machine open (right click“open with”) in the Firefox browser to

read it yourself rather than in Notepad.
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# Columns in the Table below represent:

#

# 1) Radius of the zone in units of one solar radius

# 2) Temperature in units of 10^6 deg (K)

# 3) Logarithm (to the base 10) of the electron density in units of

# cm^{-3}/N_A, where N_A is the Avogadro number

# 4) Mass of the zone with the given radius in units of one solar mass

# 5) Fraction of pp neutrinos produced in the zone

# 6) Fraction of pep neutrinos produced in the zone

# 7) Fraction of hep neutrinos produced in the zone

# 8) Fraction of beryllium 7 neutrinos produced in the zone

# 9) Fraction of boron 8 neutrinos produced in the zone

# 10) Fraction of nitrogen 13 neutrinos produced in the zone

# 11) Fraction of oxygen 15 neutrinos produced in the zone

# 12) Fraction of florine 17 neutrinos produced in the zone

#

# FORMAT: (f6.4,tr1,f6.3,tr1,f5.3,tr2,9(e14.8,tr2))

You should index columns in an array beginning at zero in most computer languages, so

remember to decrement each column number above when looking for the desired column,

e.g., the radius field will be in column zero in your array (more on loading to follow). The

FORMAT line appears to be a FORTRAN file format specifier. For example, tr1 is an instruction

to tab one character to the right to the next position in the data record. We ignore this

and simply rely on NumPy text loading function to recognize whitespace as data separators

(delimiters) and LF as end of line characters. The following line of Python will load the

SSM data file into a local ndarray. This assumes that you have loaded NumPy (as np) and

are running Python 3 (see VII for the import statements):

# read in the B16GS98 neutrino data set

B16GS98neutrinoData = np.loadtxt("GS98 comp neutrino and e profile.dat")

Following that load, you can use NumPy inscrutable slice syntax to get data entries of

interest (in an interactive session for example), remembering to decrement column field

identifiers from header:
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# column 2 is the density; want column 2 of row 91

# make a scalar out of the single entry

GS98_e_dens_val = B16GS98neutrinoData[91:92,2:3].flatten()[0]

# rem that [0] gets the single resulting value out

From the data header above you see that we just obtained the electron density at that data

row 91. This is the row for data at solar radius r� = 0.0460. If you have the data file open

in Firefox browser (or are in a Linux environment) you can just read the file yourself and

look for the radius of interest, the first column in each data row. The rows may wrap around

in your display because of their length but the radius entries are recognizable as a series

beginning at r� = 0.0005, incrementing by 0.0005 each row, and ending at r� = 0.5000.

There is no need to give neutrino production data past that the midway point on the way out

of the Sun as the temperature and density do not support the necessary nuclear reactions.

That electron density value, Ne(normed) = 1.9580 (Python variable GS98_e_dens_val),

we just obtained is, as the header information told us, the base 10 log of the electron number

density per cm3 divided by Avogadro’s number. To see the actual number density ne then,

ne = (10Ne(normed))(N0) where N0 is Avogadro’s number:

n_e_r0460 = 10**(GS98_e_dens_val)*N_0

print("Electron number density at r=0.0460 is {0:.4e} cm^-3".\

format(n_e_r0460))

That should print, in an interactive session,

Electron number density at r=0.0460 is 5.4670e+25 cm^-3

You can load in columns of interest into a NumPy array and then work somewhat more

sensibly with array indexing:

# get copy of B8 neutrino data col 8 as slice converted to array

B8_neut_data = np.asarray( B16GS98neutrinoData[:,8:9] )

With the 8B neutrino production fraction data in hand we could find the maximum emission

point:

# get the index of the maximum entry

loc_B8_max = np.argmax(B8_neut_data)

print("row {0:.2f}".format(loc_B8_max))
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In your Python interactive console (we are actually working in the somewhat more deluxe

Jupyter Notebook environment where we can type notes and LATEX mathematics and run

code in the same browser page) you should see something like:

row 91.00

Be aware that the retrieved value for the 8B flux fraction produced at that radial location,

B8_neut_data[91]=18.360, is a normalized quantity Φj(r) derived from the actual flux

as a function of the fractional radius (the normalized radius values we have been using,

r� = 0.0005 the core and the halfway point headed radially out of the Sun r� = 0.5000):

Φj(r) ≡ (1/Fj) dfj(r)/dr

where fj (subscript j represents the particular solar neutrino species) is the flux as a function

of radius in cm−2s−1 and Fj is the total flux for this neutrino type (equation from [11]; total

fluxes given in a separate data file at SSM Data or in [33] Table 6). So the absolute flux in a

particular zone (the concentric spherical shells of thickness r2−r1 where, as we said above, r2

will always be 0.0005+r1) should be Φabs(r) = F
∫ r
r−dr Φnorm(r) dr (we dropped the subscript

j for clarity; it is understood we are referring to one particular species). For example, if we

integrate the entire column of normalized flux data for 8B with the dr the radius fraction

from the entire column of radius position data, we should obtain the published SSM total

flux for this species, Φ(8B) = 5.46 × 106 cm−2 s−1:

# get copy of 8B neutrino data col 8 as slice converted to array

B8col = 8

B8_neut_data = \

np.asarray( B16GS98neutrinoData[:,int(B8col):int(B8col+1)] )

# get copy of neutrino data col 0 (radius) as slice converted to array

neut_dat_radius = np.asarray( B16GS98neutrinoData[:,0:1] )

# want 1-d row array for the NumPy trapezoidal integrator fcn

# (simpler than axis specifications)

y_vals_to_int = np.reshape(B8_neut_data, B8_neut_data.shape[0])

dx_vals = np.reshape(neut_dat_radius, neut_dat_radius.shape[0])
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# y is Phi_norm(r) and x is dr at each r

integrated_flux_fractions_B8 = np.trapz( y_vals_to_int, x=dx_vals )

phi_B8_from_GS98df = phi_B8_SSM * integrated_flux_fractions_B8

print("flux fractions integrated: {0:.4f}".\

format(integrated_flux_fractions_B8))

print("Abs flux total: {0:.4e} cm^-2 s^-1".format( phi_B8_from_GS98df ))

The result printed on your console should be (note that all of the SSM neutrino species

normalized flux series should integrate to 1):

flux fractions integrated: 0.9999

Abs flux total: 5.4596e+06 cm^-2 s^-1

The 8B Φnorm(r) conforms almost identically to a Maxwell distribution

f(x) =

√
2

π

x2e−(x−µ)
2/(2σ2)

σ3

where µ = −0.00022851 and σ = 0.03172368 (we fit the SSM data using the SciPy non-linear

least squares fitter curve_fit on the Maxwell function above with σ (“scale”) and µ (“loc”)

as the parameters to fit and the flux data the dependent variable, the radius fractions the

independent variable). If we wanted to know the absolute flux originating at our maximum

emission zone at r� = 0.0460 for this species we could integrate the Maxwell function fit at

index 91 (using the SciPy quad integrator adapted from the Fortran libray QUADPACK):

# SSM 8B total flux prediction

phi_B8_SSM = 5.46e6 # cm^-2 s^-1

# use globals for loc and scale to avoid passng args to quad integrator

Mw_constant = np.sqrt(2/np.pi)

loc_Mw = -0.00022851 # popt[0] from the Maxwell fit, loc parameter

scale_Mw = 0.03172368 # popt[1] from the Maxwell fit, scale parameter

def f_Maxw( x ):
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return \

(Mw_constant*( x**2 *np.exp( -(x-loc_Mw)**2/(2*scale_Mw**2)))/scale_Mw**3)

# select radial slice location index of interest

index_08131052 = 91 # the data row number, 0 - 999

up_lim = dx_vals[index_08131052]

low_lim = dx_vals[index_08131052-1]

# do not attempt to integrate the core zero index, for obvious reasons

# quad integrates f from lower to upper limit of integration

integral_res_08131109, abserr = quad(f_Maxw, low_lim, up_lim)

# apply the absolute flux factor to integration result

abs_flux_08131110 = integral_res_08131109 * phi_B8_SSM

print("abs flux: {0:.4e} cm^-2 s^-1".format(abs_flux_08131110))

Your console result, the absolute 8B neutrino flux originating at this zone, should be

abs flux: 4.9956e+04 cm^-2 s^-1

You could simply integrate the data at this zone directly (we used the SciPy Simpson’s

rule integrator for sample data in this case):

x_rad_upper = 91 # data row index, corresponds to a radial location

# Python range is to one less than upper index

dx_radius_simps = dx_vals[x_rad_upper-1:x_rad_upper+1]

integ_res_08121626 = \

simps( y_vals_to_int[x_rad_upper-1:x_rad_upper+1], x=dx_radius_simps)

F_r_08121608 = (integ_res_08121626)*phi_B8_SSM

print("absolute flux at this slice: {0:.4e} cm^-2".format(F_r_08121608))
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print(dx_radius_simps)

print( y_vals_to_int[x_rad_upper-1:x_rad_upper+1])

end{verbatim}

The console result should be

\begin{verbatim}

absolute flux at this slice: 4.9958e+04 cm^-2

[ 0.0455 0.046 ]

[ 18.2393535 18.3601275]

That is reasonably close agreement between the Maxwell fit integration vs the direct data

integration. Use of the SSM neutrino flux data should be more clear at this point.
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